The Entrance Law of the Excursion Measure of the Reflected Process for Some Classes of Lévy Processes

We provide integral formulae for the Laplace transform of the entrance law of the reflected excursions for symmetric Lévy processes in terms of their characteristic exponent. For subordinate Brownian motions and stable processes we express the density of the entrance law in terms of the generalized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2020-10, Vol.169 (1), p.59-77
Hauptverfasser: Chaumont, Loïc, Małecki, Jacek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue 1
container_start_page 59
container_title Acta applicandae mathematicae
container_volume 169
creator Chaumont, Loïc
Małecki, Jacek
description We provide integral formulae for the Laplace transform of the entrance law of the reflected excursions for symmetric Lévy processes in terms of their characteristic exponent. For subordinate Brownian motions and stable processes we express the density of the entrance law in terms of the generalized eigenfunctions for the semigroup of the process killed when exiting the positive half-line. We use the formulae to study in-depth properties of the density of the entrance law such as asymptotic behavior of its derivatives in time variable.
doi_str_mv 10.1007/s10440-019-00288-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2287811404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287811404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-eb9185b4593990f70d0ba9104613103bd0a8a395bbd575488796d47cab9b484a3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWBvGsRPbS1SVHykIBGVt2ckEWrVJsROgR-IcXIyUgNixGmne995oHiHHHE45gDqLHKQEBtwwgERrpnfIiKcqYQZEtktGwDPFdK_vk4MYFwAgTJaNSDV7Rjqt2-DqAmnu3mhT0Xa7ey-6EOdNTW_QxS7gr3CP1RKLFkt6F5oCY6RVE-hDs0I6WboYMW7J_PPjdfNLYDwke5VbRjz6mWPyeDGdTa5Yfnt5PTnPWSG4bBl6w3XqZWqEMVApKME70_-WccFB-BKcdsKk3pepSqXWymSlVIXzxkstnRiTkyF3HZqXDmNrF00X6v6kTRKtNOcSZE8lA1WEJsaAlV2H-cqFjeVgt33aoU_b92W_-7S6N4nBFHu4fsLwF_2P6wudvHfF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287811404</pqid></control><display><type>article</type><title>The Entrance Law of the Excursion Measure of the Reflected Process for Some Classes of Lévy Processes</title><source>SpringerNature Journals</source><creator>Chaumont, Loïc ; Małecki, Jacek</creator><creatorcontrib>Chaumont, Loïc ; Małecki, Jacek</creatorcontrib><description>We provide integral formulae for the Laplace transform of the entrance law of the reflected excursions for symmetric Lévy processes in terms of their characteristic exponent. For subordinate Brownian motions and stable processes we express the density of the entrance law in terms of the generalized eigenfunctions for the semigroup of the process killed when exiting the positive half-line. We use the formulae to study in-depth properties of the density of the entrance law such as asymptotic behavior of its derivatives in time variable.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-019-00288-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Asymptotic properties ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Density ; Eigenvectors ; Entrances ; Laplace transforms ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Probability Theory and Stochastic Processes</subject><ispartof>Acta applicandae mathematicae, 2020-10, Vol.169 (1), p.59-77</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-eb9185b4593990f70d0ba9104613103bd0a8a395bbd575488796d47cab9b484a3</cites><orcidid>0000-0003-2250-5010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-019-00288-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-019-00288-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chaumont, Loïc</creatorcontrib><creatorcontrib>Małecki, Jacek</creatorcontrib><title>The Entrance Law of the Excursion Measure of the Reflected Process for Some Classes of Lévy Processes</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>We provide integral formulae for the Laplace transform of the entrance law of the reflected excursions for symmetric Lévy processes in terms of their characteristic exponent. For subordinate Brownian motions and stable processes we express the density of the entrance law in terms of the generalized eigenfunctions for the semigroup of the process killed when exiting the positive half-line. We use the formulae to study in-depth properties of the density of the entrance law such as asymptotic behavior of its derivatives in time variable.</description><subject>Applications of Mathematics</subject><subject>Asymptotic properties</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Density</subject><subject>Eigenvectors</subject><subject>Entrances</subject><subject>Laplace transforms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWBvGsRPbS1SVHykIBGVt2ckEWrVJsROgR-IcXIyUgNixGmne995oHiHHHE45gDqLHKQEBtwwgERrpnfIiKcqYQZEtktGwDPFdK_vk4MYFwAgTJaNSDV7Rjqt2-DqAmnu3mhT0Xa7ey-6EOdNTW_QxS7gr3CP1RKLFkt6F5oCY6RVE-hDs0I6WboYMW7J_PPjdfNLYDwke5VbRjz6mWPyeDGdTa5Yfnt5PTnPWSG4bBl6w3XqZWqEMVApKME70_-WccFB-BKcdsKk3pepSqXWymSlVIXzxkstnRiTkyF3HZqXDmNrF00X6v6kTRKtNOcSZE8lA1WEJsaAlV2H-cqFjeVgt33aoU_b92W_-7S6N4nBFHu4fsLwF_2P6wudvHfF</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Chaumont, Loïc</creator><creator>Małecki, Jacek</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2250-5010</orcidid></search><sort><creationdate>20201001</creationdate><title>The Entrance Law of the Excursion Measure of the Reflected Process for Some Classes of Lévy Processes</title><author>Chaumont, Loïc ; Małecki, Jacek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-eb9185b4593990f70d0ba9104613103bd0a8a395bbd575488796d47cab9b484a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Asymptotic properties</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Density</topic><topic>Eigenvectors</topic><topic>Entrances</topic><topic>Laplace transforms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaumont, Loïc</creatorcontrib><creatorcontrib>Małecki, Jacek</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaumont, Loïc</au><au>Małecki, Jacek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Entrance Law of the Excursion Measure of the Reflected Process for Some Classes of Lévy Processes</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>169</volume><issue>1</issue><spage>59</spage><epage>77</epage><pages>59-77</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>We provide integral formulae for the Laplace transform of the entrance law of the reflected excursions for symmetric Lévy processes in terms of their characteristic exponent. For subordinate Brownian motions and stable processes we express the density of the entrance law in terms of the generalized eigenfunctions for the semigroup of the process killed when exiting the positive half-line. We use the formulae to study in-depth properties of the density of the entrance law such as asymptotic behavior of its derivatives in time variable.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-019-00288-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2250-5010</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2020-10, Vol.169 (1), p.59-77
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_journals_2287811404
source SpringerNature Journals
subjects Applications of Mathematics
Asymptotic properties
Calculus of Variations and Optimal Control
Optimization
Computational Mathematics and Numerical Analysis
Density
Eigenvectors
Entrances
Laplace transforms
Mathematics
Mathematics and Statistics
Partial Differential Equations
Probability Theory and Stochastic Processes
title The Entrance Law of the Excursion Measure of the Reflected Process for Some Classes of Lévy Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Entrance%20Law%20of%20the%20Excursion%20Measure%20of%20the%20Reflected%20Process%20for%20Some%20Classes%20of%20L%C3%A9vy%20Processes&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Chaumont,%20Lo%C3%AFc&rft.date=2020-10-01&rft.volume=169&rft.issue=1&rft.spage=59&rft.epage=77&rft.pages=59-77&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-019-00288-8&rft_dat=%3Cproquest_cross%3E2287811404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287811404&rft_id=info:pmid/&rfr_iscdi=true