On Some Regularity Criteria for Axisymmetric Navier–Stokes Equations
We point out some criteria that imply regularity of axisymmetric solutions to Navier–Stokes equations. We show that boundedness of ‖ v r / r 3 ‖ L 2 ( R 3 × ( 0 , T ) ) as well as boundedness of ‖ ω φ / r ‖ L 2 ( R 3 × ( 0 , T ) ) , where v r is the radial component of velocity and ω φ is the angula...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical fluid mechanics 2019-12, Vol.21 (4), p.1-14, Article 51 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Journal of mathematical fluid mechanics |
container_volume | 21 |
creator | Rencławowicz, Joanna Zaja̧czkowski, Wojciech M. |
description | We point out some criteria that imply regularity of axisymmetric solutions to Navier–Stokes equations. We show that boundedness of
‖
v
r
/
r
3
‖
L
2
(
R
3
×
(
0
,
T
)
)
as well as boundedness of
‖
ω
φ
/
r
‖
L
2
(
R
3
×
(
0
,
T
)
)
, where
v
r
is the radial component of velocity and
ω
φ
is the angular component of vorticity, imply regularity of weak solutions. |
doi_str_mv | 10.1007/s00021-019-0447-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2287519819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287519819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-c85b139e7673a50b12be1ce879e3421fabf02adb422cfdf4041333670bb120493</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEmPwANwqcS7YSds0x2naGNLEJAbnKO3SKWNttqRF7MY78IY8CZmK4MTF9uH7besj5BrhFgH4nQcAijGgiCFJeAwnZIAJpXEmUnr6O9P8nFx4vwFAngo6INNFEy1traMnve62ypn2EI1D1c6oqLIuGr0bf6hr3TpTRo_qzWj39fG5bO2r9tFk36nW2MZfkrNKbb2--ulD8jKdPI9n8Xxx_zAezeOSiayNyzwtkAnNM85UCgXSQmOpcy40SyhWqqiAqlURni2rVZVAgoyxjEMRUEgEG5Kbfu_O2X2nfSs3tnNNOCkpzXmKIscjhT1VOuu905XcOVMrd5AI8qhL9rpk0CWPuiSEDO0zPrDNWru_zf-HvgGNDG1B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287519819</pqid></control><display><type>article</type><title>On Some Regularity Criteria for Axisymmetric Navier–Stokes Equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rencławowicz, Joanna ; Zaja̧czkowski, Wojciech M.</creator><creatorcontrib>Rencławowicz, Joanna ; Zaja̧czkowski, Wojciech M.</creatorcontrib><description>We point out some criteria that imply regularity of axisymmetric solutions to Navier–Stokes equations. We show that boundedness of
‖
v
r
/
r
3
‖
L
2
(
R
3
×
(
0
,
T
)
)
as well as boundedness of
‖
ω
φ
/
r
‖
L
2
(
R
3
×
(
0
,
T
)
)
, where
v
r
is the radial component of velocity and
ω
φ
is the angular component of vorticity, imply regularity of weak solutions.</description><identifier>ISSN: 1422-6928</identifier><identifier>EISSN: 1422-6952</identifier><identifier>DOI: 10.1007/s00021-019-0447-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Angular velocity ; Classical and Continuum Physics ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluid- and Aerodynamics ; Mathematical analysis ; Mathematical Methods in Physics ; Navier-Stokes equations ; Physics ; Physics and Astronomy ; Regularity ; Theoretical mathematics ; Vorticity</subject><ispartof>Journal of mathematical fluid mechanics, 2019-12, Vol.21 (4), p.1-14, Article 51</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-c85b139e7673a50b12be1ce879e3421fabf02adb422cfdf4041333670bb120493</citedby><cites>FETCH-LOGICAL-c396t-c85b139e7673a50b12be1ce879e3421fabf02adb422cfdf4041333670bb120493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00021-019-0447-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00021-019-0447-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rencławowicz, Joanna</creatorcontrib><creatorcontrib>Zaja̧czkowski, Wojciech M.</creatorcontrib><title>On Some Regularity Criteria for Axisymmetric Navier–Stokes Equations</title><title>Journal of mathematical fluid mechanics</title><addtitle>J. Math. Fluid Mech</addtitle><description>We point out some criteria that imply regularity of axisymmetric solutions to Navier–Stokes equations. We show that boundedness of
‖
v
r
/
r
3
‖
L
2
(
R
3
×
(
0
,
T
)
)
as well as boundedness of
‖
ω
φ
/
r
‖
L
2
(
R
3
×
(
0
,
T
)
)
, where
v
r
is the radial component of velocity and
ω
φ
is the angular component of vorticity, imply regularity of weak solutions.</description><subject>Angular velocity</subject><subject>Classical and Continuum Physics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regularity</subject><subject>Theoretical mathematics</subject><subject>Vorticity</subject><issn>1422-6928</issn><issn>1422-6952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kMFOwzAMhiMEEmPwANwqcS7YSds0x2naGNLEJAbnKO3SKWNttqRF7MY78IY8CZmK4MTF9uH7besj5BrhFgH4nQcAijGgiCFJeAwnZIAJpXEmUnr6O9P8nFx4vwFAngo6INNFEy1traMnve62ypn2EI1D1c6oqLIuGr0bf6hr3TpTRo_qzWj39fG5bO2r9tFk36nW2MZfkrNKbb2--ulD8jKdPI9n8Xxx_zAezeOSiayNyzwtkAnNM85UCgXSQmOpcy40SyhWqqiAqlURni2rVZVAgoyxjEMRUEgEG5Kbfu_O2X2nfSs3tnNNOCkpzXmKIscjhT1VOuu905XcOVMrd5AI8qhL9rpk0CWPuiSEDO0zPrDNWru_zf-HvgGNDG1B</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Rencławowicz, Joanna</creator><creator>Zaja̧czkowski, Wojciech M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>On Some Regularity Criteria for Axisymmetric Navier–Stokes Equations</title><author>Rencławowicz, Joanna ; Zaja̧czkowski, Wojciech M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-c85b139e7673a50b12be1ce879e3421fabf02adb422cfdf4041333670bb120493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angular velocity</topic><topic>Classical and Continuum Physics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regularity</topic><topic>Theoretical mathematics</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rencławowicz, Joanna</creatorcontrib><creatorcontrib>Zaja̧czkowski, Wojciech M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of mathematical fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rencławowicz, Joanna</au><au>Zaja̧czkowski, Wojciech M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Some Regularity Criteria for Axisymmetric Navier–Stokes Equations</atitle><jtitle>Journal of mathematical fluid mechanics</jtitle><stitle>J. Math. Fluid Mech</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>21</volume><issue>4</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>51</artnum><issn>1422-6928</issn><eissn>1422-6952</eissn><abstract>We point out some criteria that imply regularity of axisymmetric solutions to Navier–Stokes equations. We show that boundedness of
‖
v
r
/
r
3
‖
L
2
(
R
3
×
(
0
,
T
)
)
as well as boundedness of
‖
ω
φ
/
r
‖
L
2
(
R
3
×
(
0
,
T
)
)
, where
v
r
is the radial component of velocity and
ω
φ
is the angular component of vorticity, imply regularity of weak solutions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00021-019-0447-0</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-6928 |
ispartof | Journal of mathematical fluid mechanics, 2019-12, Vol.21 (4), p.1-14, Article 51 |
issn | 1422-6928 1422-6952 |
language | eng |
recordid | cdi_proquest_journals_2287519819 |
source | SpringerLink Journals - AutoHoldings |
subjects | Angular velocity Classical and Continuum Physics Fluid dynamics Fluid flow Fluid mechanics Fluid- and Aerodynamics Mathematical analysis Mathematical Methods in Physics Navier-Stokes equations Physics Physics and Astronomy Regularity Theoretical mathematics Vorticity |
title | On Some Regularity Criteria for Axisymmetric Navier–Stokes Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Some%20Regularity%20Criteria%20for%20Axisymmetric%20Navier%E2%80%93Stokes%20Equations&rft.jtitle=Journal%20of%20mathematical%20fluid%20mechanics&rft.au=Renc%C5%82awowicz,%20Joanna&rft.date=2019-12-01&rft.volume=21&rft.issue=4&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=51&rft.issn=1422-6928&rft.eissn=1422-6952&rft_id=info:doi/10.1007/s00021-019-0447-0&rft_dat=%3Cproquest_cross%3E2287519819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287519819&rft_id=info:pmid/&rfr_iscdi=true |