Study on the Influence of Prior Cold Work on Precipitation Behavior of 304HCu Stainless Steel During Isothermal Aging

The precipitation strengthening behavior of 304HCu austenitic stainless steel during isothermal aging at 650 °C is studied under 10 and 20 pct prior cold-worked conditions. The age hardening behavior under these cold-working conditions have been studied using hardness and electrical conductivity mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2019-11, Vol.50 (11), p.5476-5482
Hauptverfasser: Manojkumar, R., Mahadevan, S., Mukhopadhyay, C. K., Singh, M. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5482
container_issue 11
container_start_page 5476
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 50
creator Manojkumar, R.
Mahadevan, S.
Mukhopadhyay, C. K.
Singh, M. N.
description The precipitation strengthening behavior of 304HCu austenitic stainless steel during isothermal aging at 650 °C is studied under 10 and 20 pct prior cold-worked conditions. The age hardening behavior under these cold-working conditions have been studied using hardness and electrical conductivity measurements. The analysis of electrical conductivity and hardness variation, during isothermal aging at 650 °C using the Johnson–Mehl–Avrami equation, indicates an increase in precipitation kinetics in the matrix, influenced by the dislocations formed during cold working. Further, XRD profiles of different cold-worked samples obtained from the INDUS-2 synchrotron are able to indicate the formation of very fine precipitates during thermal aging and these findings are corroborated with conductivity and hardness changes. The observed change in precipitation kinetics due to deformation is analyzed to evaluate an equivalent change in activation energy which is attributed to an equivalent of increase in aging temperature.
doi_str_mv 10.1007/s11661-019-05441-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2287214339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287214339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b3bbc8fd3326bfc76a83a0d4fcc66bc6c96b9555e6c4ea8aff174e8d4431a23f3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19WkJ03byzk_Nhg4mOJlSNNk6-yamrTC_r2pFbzz6nzwvO_hvAhdU3JLCUnvPKWc04jQPCIJYzRiJ2hCEwYRzRk5DT1JIUp4DOfowvs9IQEFPkH9puvLI7YN7nYaLxtT97pRGluD166yDs9tXeJ36z4GZu20qtqqk10Vpnu9k18DE2AgbDHv8aaTVVNr70OndY0felc1W7z0Nti7g6zxbBsWl-jMyNrrq986RW9Pj6_zRbR6eV7OZ6tIAc27qICiUJkpAWJeGJVymYEkJTNKcV4ornJe5EmSaK6Ylpk0hqZMZyVjQGUMBqboZvRtnf3ste_E3vauCSdFHGdpTBlAHqh4pJSz3jttROuqg3RHQYkY4hVjvCJkJn7iFSyIYBT5dnhRuz_rf1TfSfV-DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287214339</pqid></control><display><type>article</type><title>Study on the Influence of Prior Cold Work on Precipitation Behavior of 304HCu Stainless Steel During Isothermal Aging</title><source>SpringerNature Journals</source><creator>Manojkumar, R. ; Mahadevan, S. ; Mukhopadhyay, C. K. ; Singh, M. N.</creator><creatorcontrib>Manojkumar, R. ; Mahadevan, S. ; Mukhopadhyay, C. K. ; Singh, M. N.</creatorcontrib><description>The precipitation strengthening behavior of 304HCu austenitic stainless steel during isothermal aging at 650 °C is studied under 10 and 20 pct prior cold-worked conditions. The age hardening behavior under these cold-working conditions have been studied using hardness and electrical conductivity measurements. The analysis of electrical conductivity and hardness variation, during isothermal aging at 650 °C using the Johnson–Mehl–Avrami equation, indicates an increase in precipitation kinetics in the matrix, influenced by the dislocations formed during cold working. Further, XRD profiles of different cold-worked samples obtained from the INDUS-2 synchrotron are able to indicate the formation of very fine precipitates during thermal aging and these findings are corroborated with conductivity and hardness changes. The observed change in precipitation kinetics due to deformation is analyzed to evaluate an equivalent change in activation energy which is attributed to an equivalent of increase in aging temperature.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-019-05441-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Age hardening ; Aging ; Aging (artificial) ; Austenitic stainless steels ; Avrami equation ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cold ; Cold working ; Deformation analysis ; Dislocations ; Electrical resistivity ; Equivalence ; Hardness ; Heat treating ; Materials Science ; Metallic Materials ; Nanotechnology ; Precipitates ; Precipitation hardening ; Stainless steel ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2019-11, Vol.50 (11), p.5476-5482</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2019</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b3bbc8fd3326bfc76a83a0d4fcc66bc6c96b9555e6c4ea8aff174e8d4431a23f3</citedby><cites>FETCH-LOGICAL-c319t-b3bbc8fd3326bfc76a83a0d4fcc66bc6c96b9555e6c4ea8aff174e8d4431a23f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-019-05441-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-019-05441-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Manojkumar, R.</creatorcontrib><creatorcontrib>Mahadevan, S.</creatorcontrib><creatorcontrib>Mukhopadhyay, C. K.</creatorcontrib><creatorcontrib>Singh, M. N.</creatorcontrib><title>Study on the Influence of Prior Cold Work on Precipitation Behavior of 304HCu Stainless Steel During Isothermal Aging</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The precipitation strengthening behavior of 304HCu austenitic stainless steel during isothermal aging at 650 °C is studied under 10 and 20 pct prior cold-worked conditions. The age hardening behavior under these cold-working conditions have been studied using hardness and electrical conductivity measurements. The analysis of electrical conductivity and hardness variation, during isothermal aging at 650 °C using the Johnson–Mehl–Avrami equation, indicates an increase in precipitation kinetics in the matrix, influenced by the dislocations formed during cold working. Further, XRD profiles of different cold-worked samples obtained from the INDUS-2 synchrotron are able to indicate the formation of very fine precipitates during thermal aging and these findings are corroborated with conductivity and hardness changes. The observed change in precipitation kinetics due to deformation is analyzed to evaluate an equivalent change in activation energy which is attributed to an equivalent of increase in aging temperature.</description><subject>Age hardening</subject><subject>Aging</subject><subject>Aging (artificial)</subject><subject>Austenitic stainless steels</subject><subject>Avrami equation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cold</subject><subject>Cold working</subject><subject>Deformation analysis</subject><subject>Dislocations</subject><subject>Electrical resistivity</subject><subject>Equivalence</subject><subject>Hardness</subject><subject>Heat treating</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Precipitates</subject><subject>Precipitation hardening</subject><subject>Stainless steel</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19WkJ03byzk_Nhg4mOJlSNNk6-yamrTC_r2pFbzz6nzwvO_hvAhdU3JLCUnvPKWc04jQPCIJYzRiJ2hCEwYRzRk5DT1JIUp4DOfowvs9IQEFPkH9puvLI7YN7nYaLxtT97pRGluD166yDs9tXeJ36z4GZu20qtqqk10Vpnu9k18DE2AgbDHv8aaTVVNr70OndY0felc1W7z0Nti7g6zxbBsWl-jMyNrrq986RW9Pj6_zRbR6eV7OZ6tIAc27qICiUJkpAWJeGJVymYEkJTNKcV4ornJe5EmSaK6Ylpk0hqZMZyVjQGUMBqboZvRtnf3ste_E3vauCSdFHGdpTBlAHqh4pJSz3jttROuqg3RHQYkY4hVjvCJkJn7iFSyIYBT5dnhRuz_rf1TfSfV-DQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Manojkumar, R.</creator><creator>Mahadevan, S.</creator><creator>Mukhopadhyay, C. K.</creator><creator>Singh, M. N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20191101</creationdate><title>Study on the Influence of Prior Cold Work on Precipitation Behavior of 304HCu Stainless Steel During Isothermal Aging</title><author>Manojkumar, R. ; Mahadevan, S. ; Mukhopadhyay, C. K. ; Singh, M. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b3bbc8fd3326bfc76a83a0d4fcc66bc6c96b9555e6c4ea8aff174e8d4431a23f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Age hardening</topic><topic>Aging</topic><topic>Aging (artificial)</topic><topic>Austenitic stainless steels</topic><topic>Avrami equation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cold</topic><topic>Cold working</topic><topic>Deformation analysis</topic><topic>Dislocations</topic><topic>Electrical resistivity</topic><topic>Equivalence</topic><topic>Hardness</topic><topic>Heat treating</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Precipitates</topic><topic>Precipitation hardening</topic><topic>Stainless steel</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manojkumar, R.</creatorcontrib><creatorcontrib>Mahadevan, S.</creatorcontrib><creatorcontrib>Mukhopadhyay, C. K.</creatorcontrib><creatorcontrib>Singh, M. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manojkumar, R.</au><au>Mahadevan, S.</au><au>Mukhopadhyay, C. K.</au><au>Singh, M. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Influence of Prior Cold Work on Precipitation Behavior of 304HCu Stainless Steel During Isothermal Aging</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>50</volume><issue>11</issue><spage>5476</spage><epage>5482</epage><pages>5476-5482</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>The precipitation strengthening behavior of 304HCu austenitic stainless steel during isothermal aging at 650 °C is studied under 10 and 20 pct prior cold-worked conditions. The age hardening behavior under these cold-working conditions have been studied using hardness and electrical conductivity measurements. The analysis of electrical conductivity and hardness variation, during isothermal aging at 650 °C using the Johnson–Mehl–Avrami equation, indicates an increase in precipitation kinetics in the matrix, influenced by the dislocations formed during cold working. Further, XRD profiles of different cold-worked samples obtained from the INDUS-2 synchrotron are able to indicate the formation of very fine precipitates during thermal aging and these findings are corroborated with conductivity and hardness changes. The observed change in precipitation kinetics due to deformation is analyzed to evaluate an equivalent change in activation energy which is attributed to an equivalent of increase in aging temperature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-019-05441-4</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2019-11, Vol.50 (11), p.5476-5482
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2287214339
source SpringerNature Journals
subjects Age hardening
Aging
Aging (artificial)
Austenitic stainless steels
Avrami equation
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cold
Cold working
Deformation analysis
Dislocations
Electrical resistivity
Equivalence
Hardness
Heat treating
Materials Science
Metallic Materials
Nanotechnology
Precipitates
Precipitation hardening
Stainless steel
Structural Materials
Surfaces and Interfaces
Thin Films
title Study on the Influence of Prior Cold Work on Precipitation Behavior of 304HCu Stainless Steel During Isothermal Aging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Influence%20of%20Prior%20Cold%20Work%20on%20Precipitation%20Behavior%20of%20304HCu%20Stainless%20Steel%20During%20Isothermal%20Aging&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Manojkumar,%20R.&rft.date=2019-11-01&rft.volume=50&rft.issue=11&rft.spage=5476&rft.epage=5482&rft.pages=5476-5482&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-019-05441-4&rft_dat=%3Cproquest_cross%3E2287214339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287214339&rft_id=info:pmid/&rfr_iscdi=true