Simulating subhourly variability of wind power output

As installed wind power capacity grows, subhourly variability in wind power output becomes increasingly important for determining the system flexibility needs, operating reserve requirements, and cost associated with wind integration. This paper presents a new methodology for simulating subhourly wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind energy (Chichester, England) England), 2019-10, Vol.22 (10), p.1275-1287
1. Verfasser: Fertig, Emily
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1287
container_issue 10
container_start_page 1275
container_title Wind energy (Chichester, England)
container_volume 22
creator Fertig, Emily
description As installed wind power capacity grows, subhourly variability in wind power output becomes increasingly important for determining the system flexibility needs, operating reserve requirements, and cost associated with wind integration. This paper presents a new methodology for simulating subhourly wind power output based on hourly average time series, which are often produced for system planning analyses, for both existing wind plants and expanded, hypothetical portfolios of wind plants. The subhourly model has an AR(p)‐ARCH(q) structure with exogenous input in the heteroskedasticity term. Model coefficients may be fit directly to high‐pass filtered historical data if it exists; for sets of wind plants containing hypothetical plants for which there are no historical data, this paper presents a method to determine model coefficients based on wind plant capacities, capacity factors, and pairwise distances. Unlike predecessors, the model presented in this paper is independent of wind speed data, captures explicitly the high variability associated with intermediate levels of power output, and captures distance‐dependent correlation between the power output of wind plants across subhourly frequencies. The model is parameterized with 1‐minute 2014 plant‐level wind power data from Electric Reliability Council of Texas (ERCOT) and validated out‐of‐sample against analogous 2015 data. The expanded‐capacity model, fit to 2014 data, produces accurate subhourly time series for the 2015 wind fleet (a 49% capacity expansion) based only on the 2015 system's wind plant capacities, capacity factors, and pairwise distances. This supports its use in simulating subhourly fleet aggregate wind power variability for future high‐wind scenarios.
doi_str_mv 10.1002/we.2354
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2287050050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287050050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-780096ac96633a36d513cad44261956cd4bfa3e5b73bf68ddad2d45374a7c7243</originalsourceid><addsrcrecordid>eNp10M9LwzAUB_AgCs4p_gsBDx6kM7-THmVsKgw8qHgMaZNqRtfWpLH0v7fbvAoP3jt8eO_xBeAaowVGiNwPbkEoZydghlGeZ1gRdnqYecYIY-fgIsYtQhhhrGaAv_pdqk3vm08YU_HVplCP8McEbwpf-36EbQUH31jYtYMLsE19l_pLcFaZOrqrvz4H7-vV2_Ip27w8Pi8fNllJiWKZVAjlwpS5EJQaKizHtDSWMSJwzkVpWVEZ6nghaVEJZa2xxDJOJTOylITRObg57u1C-51c7PV2erCZTmpClEQcTTWp26MqQxtjcJXugt-ZMGqM9D4TPTi9z2SSd0c5-NqN_zH9sTroX6eFYHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287050050</pqid></control><display><type>article</type><title>Simulating subhourly variability of wind power output</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fertig, Emily</creator><creatorcontrib>Fertig, Emily</creatorcontrib><description>As installed wind power capacity grows, subhourly variability in wind power output becomes increasingly important for determining the system flexibility needs, operating reserve requirements, and cost associated with wind integration. This paper presents a new methodology for simulating subhourly wind power output based on hourly average time series, which are often produced for system planning analyses, for both existing wind plants and expanded, hypothetical portfolios of wind plants. The subhourly model has an AR(p)‐ARCH(q) structure with exogenous input in the heteroskedasticity term. Model coefficients may be fit directly to high‐pass filtered historical data if it exists; for sets of wind plants containing hypothetical plants for which there are no historical data, this paper presents a method to determine model coefficients based on wind plant capacities, capacity factors, and pairwise distances. Unlike predecessors, the model presented in this paper is independent of wind speed data, captures explicitly the high variability associated with intermediate levels of power output, and captures distance‐dependent correlation between the power output of wind plants across subhourly frequencies. The model is parameterized with 1‐minute 2014 plant‐level wind power data from Electric Reliability Council of Texas (ERCOT) and validated out‐of‐sample against analogous 2015 data. The expanded‐capacity model, fit to 2014 data, produces accurate subhourly time series for the 2015 wind fleet (a 49% capacity expansion) based only on the 2015 system's wind plant capacities, capacity factors, and pairwise distances. This supports its use in simulating subhourly fleet aggregate wind power variability for future high‐wind scenarios.</description><identifier>ISSN: 1095-4244</identifier><identifier>EISSN: 1099-1824</identifier><identifier>DOI: 10.1002/we.2354</identifier><language>eng</language><publisher>Bognor Regis: John Wiley &amp; Sons, Inc</publisher><subject>Computer simulation ; ERCOT ; frequency domain ; grid integration ; Mathematical models ; operating reserve ; Plant reliability ; Power plants ; stochastic processes ; Time series ; Wind power ; Wind speed</subject><ispartof>Wind energy (Chichester, England), 2019-10, Vol.22 (10), p.1275-1287</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3284-780096ac96633a36d513cad44261956cd4bfa3e5b73bf68ddad2d45374a7c7243</citedby><cites>FETCH-LOGICAL-c3284-780096ac96633a36d513cad44261956cd4bfa3e5b73bf68ddad2d45374a7c7243</cites><orcidid>0000-0002-6275-9173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwe.2354$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwe.2354$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Fertig, Emily</creatorcontrib><title>Simulating subhourly variability of wind power output</title><title>Wind energy (Chichester, England)</title><description>As installed wind power capacity grows, subhourly variability in wind power output becomes increasingly important for determining the system flexibility needs, operating reserve requirements, and cost associated with wind integration. This paper presents a new methodology for simulating subhourly wind power output based on hourly average time series, which are often produced for system planning analyses, for both existing wind plants and expanded, hypothetical portfolios of wind plants. The subhourly model has an AR(p)‐ARCH(q) structure with exogenous input in the heteroskedasticity term. Model coefficients may be fit directly to high‐pass filtered historical data if it exists; for sets of wind plants containing hypothetical plants for which there are no historical data, this paper presents a method to determine model coefficients based on wind plant capacities, capacity factors, and pairwise distances. Unlike predecessors, the model presented in this paper is independent of wind speed data, captures explicitly the high variability associated with intermediate levels of power output, and captures distance‐dependent correlation between the power output of wind plants across subhourly frequencies. The model is parameterized with 1‐minute 2014 plant‐level wind power data from Electric Reliability Council of Texas (ERCOT) and validated out‐of‐sample against analogous 2015 data. The expanded‐capacity model, fit to 2014 data, produces accurate subhourly time series for the 2015 wind fleet (a 49% capacity expansion) based only on the 2015 system's wind plant capacities, capacity factors, and pairwise distances. This supports its use in simulating subhourly fleet aggregate wind power variability for future high‐wind scenarios.</description><subject>Computer simulation</subject><subject>ERCOT</subject><subject>frequency domain</subject><subject>grid integration</subject><subject>Mathematical models</subject><subject>operating reserve</subject><subject>Plant reliability</subject><subject>Power plants</subject><subject>stochastic processes</subject><subject>Time series</subject><subject>Wind power</subject><subject>Wind speed</subject><issn>1095-4244</issn><issn>1099-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUB_AgCs4p_gsBDx6kM7-THmVsKgw8qHgMaZNqRtfWpLH0v7fbvAoP3jt8eO_xBeAaowVGiNwPbkEoZydghlGeZ1gRdnqYecYIY-fgIsYtQhhhrGaAv_pdqk3vm08YU_HVplCP8McEbwpf-36EbQUH31jYtYMLsE19l_pLcFaZOrqrvz4H7-vV2_Ip27w8Pi8fNllJiWKZVAjlwpS5EJQaKizHtDSWMSJwzkVpWVEZ6nghaVEJZa2xxDJOJTOylITRObg57u1C-51c7PV2erCZTmpClEQcTTWp26MqQxtjcJXugt-ZMGqM9D4TPTi9z2SSd0c5-NqN_zH9sTroX6eFYHo</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Fertig, Emily</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6275-9173</orcidid></search><sort><creationdate>201910</creationdate><title>Simulating subhourly variability of wind power output</title><author>Fertig, Emily</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-780096ac96633a36d513cad44261956cd4bfa3e5b73bf68ddad2d45374a7c7243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>ERCOT</topic><topic>frequency domain</topic><topic>grid integration</topic><topic>Mathematical models</topic><topic>operating reserve</topic><topic>Plant reliability</topic><topic>Power plants</topic><topic>stochastic processes</topic><topic>Time series</topic><topic>Wind power</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fertig, Emily</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Wind energy (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fertig, Emily</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating subhourly variability of wind power output</atitle><jtitle>Wind energy (Chichester, England)</jtitle><date>2019-10</date><risdate>2019</risdate><volume>22</volume><issue>10</issue><spage>1275</spage><epage>1287</epage><pages>1275-1287</pages><issn>1095-4244</issn><eissn>1099-1824</eissn><abstract>As installed wind power capacity grows, subhourly variability in wind power output becomes increasingly important for determining the system flexibility needs, operating reserve requirements, and cost associated with wind integration. This paper presents a new methodology for simulating subhourly wind power output based on hourly average time series, which are often produced for system planning analyses, for both existing wind plants and expanded, hypothetical portfolios of wind plants. The subhourly model has an AR(p)‐ARCH(q) structure with exogenous input in the heteroskedasticity term. Model coefficients may be fit directly to high‐pass filtered historical data if it exists; for sets of wind plants containing hypothetical plants for which there are no historical data, this paper presents a method to determine model coefficients based on wind plant capacities, capacity factors, and pairwise distances. Unlike predecessors, the model presented in this paper is independent of wind speed data, captures explicitly the high variability associated with intermediate levels of power output, and captures distance‐dependent correlation between the power output of wind plants across subhourly frequencies. The model is parameterized with 1‐minute 2014 plant‐level wind power data from Electric Reliability Council of Texas (ERCOT) and validated out‐of‐sample against analogous 2015 data. The expanded‐capacity model, fit to 2014 data, produces accurate subhourly time series for the 2015 wind fleet (a 49% capacity expansion) based only on the 2015 system's wind plant capacities, capacity factors, and pairwise distances. This supports its use in simulating subhourly fleet aggregate wind power variability for future high‐wind scenarios.</abstract><cop>Bognor Regis</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/we.2354</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6275-9173</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1095-4244
ispartof Wind energy (Chichester, England), 2019-10, Vol.22 (10), p.1275-1287
issn 1095-4244
1099-1824
language eng
recordid cdi_proquest_journals_2287050050
source Wiley Online Library Journals Frontfile Complete
subjects Computer simulation
ERCOT
frequency domain
grid integration
Mathematical models
operating reserve
Plant reliability
Power plants
stochastic processes
Time series
Wind power
Wind speed
title Simulating subhourly variability of wind power output
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20subhourly%20variability%20of%20wind%20power%20output&rft.jtitle=Wind%20energy%20(Chichester,%20England)&rft.au=Fertig,%20Emily&rft.date=2019-10&rft.volume=22&rft.issue=10&rft.spage=1275&rft.epage=1287&rft.pages=1275-1287&rft.issn=1095-4244&rft.eissn=1099-1824&rft_id=info:doi/10.1002/we.2354&rft_dat=%3Cproquest_cross%3E2287050050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287050050&rft_id=info:pmid/&rfr_iscdi=true