Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage

In this work, a series of MnO2 nanostructures with different crystallographic structures, including δ-MnO2 nanotubes and α-MnO2 nanorods, were prepared using polycarbonate membrane as a template. The crystallographic structure and morphology were controlled by adjusting the pH of the KMnO4 solutions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2019, Vol.21 (35), p.5322-5331
Hauptverfasser: Shen, Man, Shi Jin Zhu, Liu, Xiaoying, Fu, Xin, Wang Chen Huo, Xiao Li Liu, Yu Xiang Chen, Qian Yuan Shan, Hong-Chang, Yao, Yu Xin Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5331
container_issue 35
container_start_page 5322
container_title CrystEngComm
container_volume 21
creator Shen, Man
Shi Jin Zhu
Liu, Xiaoying
Fu, Xin
Wang Chen Huo
Xiao Li Liu
Yu Xiang Chen
Qian Yuan Shan
Hong-Chang, Yao
Yu Xin Zhang
description In this work, a series of MnO2 nanostructures with different crystallographic structures, including δ-MnO2 nanotubes and α-MnO2 nanorods, were prepared using polycarbonate membrane as a template. The crystallographic structure and morphology were controlled by adjusting the pH of the KMnO4 solutions via a one-step hydrothermal method. The crystal form of the samples changed from birnessite to α-MnO2 with the decrease in the applied pH values and a precise pH value for the critical point was found. When used as positive electrode materials in the supercapacitor, the structure prepared in the higher pH value solutions (MnO2-12, pH = 12) with a δ-type crystallographic structure gave an ideal specific capacitance of 364.1 F g−1 at a current density of 0.5 A g−1, a good rate capability, and a favorable cycling stability. An asymmetric supercapacitor assembled with MnO2-12 as the positive electrode and activated graphene (AG) as the negative electrode produced an energy density of 29.4 W h kg−1 at a power density of 248.9 W kg−1. The excellent electrochemical properties were attributed to the novel tubular structure composed of poor crystalline δ-MnO2 nanosheets, resulting in a high ionic conductivity and two-sided reaction surfaces.
doi_str_mv 10.1039/c9ce00865a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2287040441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287040441</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-c2d1e2b016b0c87e1f36c7c12624cc01ce0b9219ca44606d9dfa4e48984533163</originalsourceid><addsrcrecordid>eNotj01PwzAQRC0kJErhwi-wxDmwa7tOckQVX1JROcC5cjabtJVrFzs59N8TQU9zeKM3GiHuEB4QdP1INTFAZRfuQszQWFtUoPWVuM55D4AGEWai-dy6zNKFVh5iOm6jj_1JUgxDit5zK4_Rn_7IjuRHWCsZXIh5SCMNY-Isu5gke6apT1s-7Mh5yYHTZMlDTK7nG3HZOZ_59pxz8f3y_LV8K1br1_fl06rolYKhINUiqwbQNkBVydhpSyWhssoQAU5nmlphTc4YC7at284ZNlVdmYXWaPVc3P97jyn-jJyHzT6OKUyTG6WqEgwYg_oXdptWFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287040441</pqid></control><display><type>article</type><title>Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Shen, Man ; Shi Jin Zhu ; Liu, Xiaoying ; Fu, Xin ; Wang Chen Huo ; Xiao Li Liu ; Yu Xiang Chen ; Qian Yuan Shan ; Hong-Chang, Yao ; Yu Xin Zhang</creator><creatorcontrib>Shen, Man ; Shi Jin Zhu ; Liu, Xiaoying ; Fu, Xin ; Wang Chen Huo ; Xiao Li Liu ; Yu Xiang Chen ; Qian Yuan Shan ; Hong-Chang, Yao ; Yu Xin Zhang</creatorcontrib><description>In this work, a series of MnO2 nanostructures with different crystallographic structures, including δ-MnO2 nanotubes and α-MnO2 nanorods, were prepared using polycarbonate membrane as a template. The crystallographic structure and morphology were controlled by adjusting the pH of the KMnO4 solutions via a one-step hydrothermal method. The crystal form of the samples changed from birnessite to α-MnO2 with the decrease in the applied pH values and a precise pH value for the critical point was found. When used as positive electrode materials in the supercapacitor, the structure prepared in the higher pH value solutions (MnO2-12, pH = 12) with a δ-type crystallographic structure gave an ideal specific capacitance of 364.1 F g−1 at a current density of 0.5 A g−1, a good rate capability, and a favorable cycling stability. An asymmetric supercapacitor assembled with MnO2-12 as the positive electrode and activated graphene (AG) as the negative electrode produced an energy density of 29.4 W h kg−1 at a power density of 248.9 W kg−1. The excellent electrochemical properties were attributed to the novel tubular structure composed of poor crystalline δ-MnO2 nanosheets, resulting in a high ionic conductivity and two-sided reaction surfaces.</description><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/c9ce00865a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Critical point ; Crystal structure ; Crystallography ; Electrochemical analysis ; Electrode materials ; Electrodes ; Energy storage ; Flux density ; Graphene ; Hydrothermal crystal growth ; Ion currents ; Manganese dioxide ; Morphology ; Nanorods ; Nanostructure ; Potassium permanganate ; Supercapacitors</subject><ispartof>CrystEngComm, 2019, Vol.21 (35), p.5322-5331</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Shen, Man</creatorcontrib><creatorcontrib>Shi Jin Zhu</creatorcontrib><creatorcontrib>Liu, Xiaoying</creatorcontrib><creatorcontrib>Fu, Xin</creatorcontrib><creatorcontrib>Wang Chen Huo</creatorcontrib><creatorcontrib>Xiao Li Liu</creatorcontrib><creatorcontrib>Yu Xiang Chen</creatorcontrib><creatorcontrib>Qian Yuan Shan</creatorcontrib><creatorcontrib>Hong-Chang, Yao</creatorcontrib><creatorcontrib>Yu Xin Zhang</creatorcontrib><title>Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage</title><title>CrystEngComm</title><description>In this work, a series of MnO2 nanostructures with different crystallographic structures, including δ-MnO2 nanotubes and α-MnO2 nanorods, were prepared using polycarbonate membrane as a template. The crystallographic structure and morphology were controlled by adjusting the pH of the KMnO4 solutions via a one-step hydrothermal method. The crystal form of the samples changed from birnessite to α-MnO2 with the decrease in the applied pH values and a precise pH value for the critical point was found. When used as positive electrode materials in the supercapacitor, the structure prepared in the higher pH value solutions (MnO2-12, pH = 12) with a δ-type crystallographic structure gave an ideal specific capacitance of 364.1 F g−1 at a current density of 0.5 A g−1, a good rate capability, and a favorable cycling stability. An asymmetric supercapacitor assembled with MnO2-12 as the positive electrode and activated graphene (AG) as the negative electrode produced an energy density of 29.4 W h kg−1 at a power density of 248.9 W kg−1. The excellent electrochemical properties were attributed to the novel tubular structure composed of poor crystalline δ-MnO2 nanosheets, resulting in a high ionic conductivity and two-sided reaction surfaces.</description><subject>Critical point</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Graphene</subject><subject>Hydrothermal crystal growth</subject><subject>Ion currents</subject><subject>Manganese dioxide</subject><subject>Morphology</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Potassium permanganate</subject><subject>Supercapacitors</subject><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotj01PwzAQRC0kJErhwi-wxDmwa7tOckQVX1JROcC5cjabtJVrFzs59N8TQU9zeKM3GiHuEB4QdP1INTFAZRfuQszQWFtUoPWVuM55D4AGEWai-dy6zNKFVh5iOm6jj_1JUgxDit5zK4_Rn_7IjuRHWCsZXIh5SCMNY-Isu5gke6apT1s-7Mh5yYHTZMlDTK7nG3HZOZ_59pxz8f3y_LV8K1br1_fl06rolYKhINUiqwbQNkBVydhpSyWhssoQAU5nmlphTc4YC7at284ZNlVdmYXWaPVc3P97jyn-jJyHzT6OKUyTG6WqEgwYg_oXdptWFg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Shen, Man</creator><creator>Shi Jin Zhu</creator><creator>Liu, Xiaoying</creator><creator>Fu, Xin</creator><creator>Wang Chen Huo</creator><creator>Xiao Li Liu</creator><creator>Yu Xiang Chen</creator><creator>Qian Yuan Shan</creator><creator>Hong-Chang, Yao</creator><creator>Yu Xin Zhang</creator><general>Royal Society of Chemistry</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2019</creationdate><title>Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage</title><author>Shen, Man ; Shi Jin Zhu ; Liu, Xiaoying ; Fu, Xin ; Wang Chen Huo ; Xiao Li Liu ; Yu Xiang Chen ; Qian Yuan Shan ; Hong-Chang, Yao ; Yu Xin Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-c2d1e2b016b0c87e1f36c7c12624cc01ce0b9219ca44606d9dfa4e48984533163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Critical point</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Graphene</topic><topic>Hydrothermal crystal growth</topic><topic>Ion currents</topic><topic>Manganese dioxide</topic><topic>Morphology</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Potassium permanganate</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Man</creatorcontrib><creatorcontrib>Shi Jin Zhu</creatorcontrib><creatorcontrib>Liu, Xiaoying</creatorcontrib><creatorcontrib>Fu, Xin</creatorcontrib><creatorcontrib>Wang Chen Huo</creatorcontrib><creatorcontrib>Xiao Li Liu</creatorcontrib><creatorcontrib>Yu Xiang Chen</creatorcontrib><creatorcontrib>Qian Yuan Shan</creatorcontrib><creatorcontrib>Hong-Chang, Yao</creatorcontrib><creatorcontrib>Yu Xin Zhang</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Man</au><au>Shi Jin Zhu</au><au>Liu, Xiaoying</au><au>Fu, Xin</au><au>Wang Chen Huo</au><au>Xiao Li Liu</au><au>Yu Xiang Chen</au><au>Qian Yuan Shan</au><au>Hong-Chang, Yao</au><au>Yu Xin Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage</atitle><jtitle>CrystEngComm</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>35</issue><spage>5322</spage><epage>5331</epage><pages>5322-5331</pages><eissn>1466-8033</eissn><abstract>In this work, a series of MnO2 nanostructures with different crystallographic structures, including δ-MnO2 nanotubes and α-MnO2 nanorods, were prepared using polycarbonate membrane as a template. The crystallographic structure and morphology were controlled by adjusting the pH of the KMnO4 solutions via a one-step hydrothermal method. The crystal form of the samples changed from birnessite to α-MnO2 with the decrease in the applied pH values and a precise pH value for the critical point was found. When used as positive electrode materials in the supercapacitor, the structure prepared in the higher pH value solutions (MnO2-12, pH = 12) with a δ-type crystallographic structure gave an ideal specific capacitance of 364.1 F g−1 at a current density of 0.5 A g−1, a good rate capability, and a favorable cycling stability. An asymmetric supercapacitor assembled with MnO2-12 as the positive electrode and activated graphene (AG) as the negative electrode produced an energy density of 29.4 W h kg−1 at a power density of 248.9 W kg−1. The excellent electrochemical properties were attributed to the novel tubular structure composed of poor crystalline δ-MnO2 nanosheets, resulting in a high ionic conductivity and two-sided reaction surfaces.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ce00865a</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1466-8033
ispartof CrystEngComm, 2019, Vol.21 (35), p.5322-5331
issn 1466-8033
language eng
recordid cdi_proquest_journals_2287040441
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Critical point
Crystal structure
Crystallography
Electrochemical analysis
Electrode materials
Electrodes
Energy storage
Flux density
Graphene
Hydrothermal crystal growth
Ion currents
Manganese dioxide
Morphology
Nanorods
Nanostructure
Potassium permanganate
Supercapacitors
title Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20and%20morphology%20controlled%20polymorphic%20MnO2%20nanostructures%20for%20electrochemical%20energy%20storage&rft.jtitle=CrystEngComm&rft.au=Shen,%20Man&rft.date=2019&rft.volume=21&rft.issue=35&rft.spage=5322&rft.epage=5331&rft.pages=5322-5331&rft.eissn=1466-8033&rft_id=info:doi/10.1039/c9ce00865a&rft_dat=%3Cproquest%3E2287040441%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287040441&rft_id=info:pmid/&rfr_iscdi=true