Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage
In this work, a series of MnO2 nanostructures with different crystallographic structures, including δ-MnO2 nanotubes and α-MnO2 nanorods, were prepared using polycarbonate membrane as a template. The crystallographic structure and morphology were controlled by adjusting the pH of the KMnO4 solutions...
Gespeichert in:
Veröffentlicht in: | CrystEngComm 2019, Vol.21 (35), p.5322-5331 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5331 |
---|---|
container_issue | 35 |
container_start_page | 5322 |
container_title | CrystEngComm |
container_volume | 21 |
creator | Shen, Man Shi Jin Zhu Liu, Xiaoying Fu, Xin Wang Chen Huo Xiao Li Liu Yu Xiang Chen Qian Yuan Shan Hong-Chang, Yao Yu Xin Zhang |
description | In this work, a series of MnO2 nanostructures with different crystallographic structures, including δ-MnO2 nanotubes and α-MnO2 nanorods, were prepared using polycarbonate membrane as a template. The crystallographic structure and morphology were controlled by adjusting the pH of the KMnO4 solutions via a one-step hydrothermal method. The crystal form of the samples changed from birnessite to α-MnO2 with the decrease in the applied pH values and a precise pH value for the critical point was found. When used as positive electrode materials in the supercapacitor, the structure prepared in the higher pH value solutions (MnO2-12, pH = 12) with a δ-type crystallographic structure gave an ideal specific capacitance of 364.1 F g−1 at a current density of 0.5 A g−1, a good rate capability, and a favorable cycling stability. An asymmetric supercapacitor assembled with MnO2-12 as the positive electrode and activated graphene (AG) as the negative electrode produced an energy density of 29.4 W h kg−1 at a power density of 248.9 W kg−1. The excellent electrochemical properties were attributed to the novel tubular structure composed of poor crystalline δ-MnO2 nanosheets, resulting in a high ionic conductivity and two-sided reaction surfaces. |
doi_str_mv | 10.1039/c9ce00865a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2287040441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287040441</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-c2d1e2b016b0c87e1f36c7c12624cc01ce0b9219ca44606d9dfa4e48984533163</originalsourceid><addsrcrecordid>eNotj01PwzAQRC0kJErhwi-wxDmwa7tOckQVX1JROcC5cjabtJVrFzs59N8TQU9zeKM3GiHuEB4QdP1INTFAZRfuQszQWFtUoPWVuM55D4AGEWai-dy6zNKFVh5iOm6jj_1JUgxDit5zK4_Rn_7IjuRHWCsZXIh5SCMNY-Isu5gke6apT1s-7Mh5yYHTZMlDTK7nG3HZOZ_59pxz8f3y_LV8K1br1_fl06rolYKhINUiqwbQNkBVydhpSyWhssoQAU5nmlphTc4YC7at284ZNlVdmYXWaPVc3P97jyn-jJyHzT6OKUyTG6WqEgwYg_oXdptWFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287040441</pqid></control><display><type>article</type><title>Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Shen, Man ; Shi Jin Zhu ; Liu, Xiaoying ; Fu, Xin ; Wang Chen Huo ; Xiao Li Liu ; Yu Xiang Chen ; Qian Yuan Shan ; Hong-Chang, Yao ; Yu Xin Zhang</creator><creatorcontrib>Shen, Man ; Shi Jin Zhu ; Liu, Xiaoying ; Fu, Xin ; Wang Chen Huo ; Xiao Li Liu ; Yu Xiang Chen ; Qian Yuan Shan ; Hong-Chang, Yao ; Yu Xin Zhang</creatorcontrib><description>In this work, a series of MnO2 nanostructures with different crystallographic structures, including δ-MnO2 nanotubes and α-MnO2 nanorods, were prepared using polycarbonate membrane as a template. The crystallographic structure and morphology were controlled by adjusting the pH of the KMnO4 solutions via a one-step hydrothermal method. The crystal form of the samples changed from birnessite to α-MnO2 with the decrease in the applied pH values and a precise pH value for the critical point was found. When used as positive electrode materials in the supercapacitor, the structure prepared in the higher pH value solutions (MnO2-12, pH = 12) with a δ-type crystallographic structure gave an ideal specific capacitance of 364.1 F g−1 at a current density of 0.5 A g−1, a good rate capability, and a favorable cycling stability. An asymmetric supercapacitor assembled with MnO2-12 as the positive electrode and activated graphene (AG) as the negative electrode produced an energy density of 29.4 W h kg−1 at a power density of 248.9 W kg−1. The excellent electrochemical properties were attributed to the novel tubular structure composed of poor crystalline δ-MnO2 nanosheets, resulting in a high ionic conductivity and two-sided reaction surfaces.</description><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/c9ce00865a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Critical point ; Crystal structure ; Crystallography ; Electrochemical analysis ; Electrode materials ; Electrodes ; Energy storage ; Flux density ; Graphene ; Hydrothermal crystal growth ; Ion currents ; Manganese dioxide ; Morphology ; Nanorods ; Nanostructure ; Potassium permanganate ; Supercapacitors</subject><ispartof>CrystEngComm, 2019, Vol.21 (35), p.5322-5331</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Shen, Man</creatorcontrib><creatorcontrib>Shi Jin Zhu</creatorcontrib><creatorcontrib>Liu, Xiaoying</creatorcontrib><creatorcontrib>Fu, Xin</creatorcontrib><creatorcontrib>Wang Chen Huo</creatorcontrib><creatorcontrib>Xiao Li Liu</creatorcontrib><creatorcontrib>Yu Xiang Chen</creatorcontrib><creatorcontrib>Qian Yuan Shan</creatorcontrib><creatorcontrib>Hong-Chang, Yao</creatorcontrib><creatorcontrib>Yu Xin Zhang</creatorcontrib><title>Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage</title><title>CrystEngComm</title><description>In this work, a series of MnO2 nanostructures with different crystallographic structures, including δ-MnO2 nanotubes and α-MnO2 nanorods, were prepared using polycarbonate membrane as a template. The crystallographic structure and morphology were controlled by adjusting the pH of the KMnO4 solutions via a one-step hydrothermal method. The crystal form of the samples changed from birnessite to α-MnO2 with the decrease in the applied pH values and a precise pH value for the critical point was found. When used as positive electrode materials in the supercapacitor, the structure prepared in the higher pH value solutions (MnO2-12, pH = 12) with a δ-type crystallographic structure gave an ideal specific capacitance of 364.1 F g−1 at a current density of 0.5 A g−1, a good rate capability, and a favorable cycling stability. An asymmetric supercapacitor assembled with MnO2-12 as the positive electrode and activated graphene (AG) as the negative electrode produced an energy density of 29.4 W h kg−1 at a power density of 248.9 W kg−1. The excellent electrochemical properties were attributed to the novel tubular structure composed of poor crystalline δ-MnO2 nanosheets, resulting in a high ionic conductivity and two-sided reaction surfaces.</description><subject>Critical point</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Graphene</subject><subject>Hydrothermal crystal growth</subject><subject>Ion currents</subject><subject>Manganese dioxide</subject><subject>Morphology</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Potassium permanganate</subject><subject>Supercapacitors</subject><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotj01PwzAQRC0kJErhwi-wxDmwa7tOckQVX1JROcC5cjabtJVrFzs59N8TQU9zeKM3GiHuEB4QdP1INTFAZRfuQszQWFtUoPWVuM55D4AGEWai-dy6zNKFVh5iOm6jj_1JUgxDit5zK4_Rn_7IjuRHWCsZXIh5SCMNY-Isu5gke6apT1s-7Mh5yYHTZMlDTK7nG3HZOZ_59pxz8f3y_LV8K1br1_fl06rolYKhINUiqwbQNkBVydhpSyWhssoQAU5nmlphTc4YC7at284ZNlVdmYXWaPVc3P97jyn-jJyHzT6OKUyTG6WqEgwYg_oXdptWFg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Shen, Man</creator><creator>Shi Jin Zhu</creator><creator>Liu, Xiaoying</creator><creator>Fu, Xin</creator><creator>Wang Chen Huo</creator><creator>Xiao Li Liu</creator><creator>Yu Xiang Chen</creator><creator>Qian Yuan Shan</creator><creator>Hong-Chang, Yao</creator><creator>Yu Xin Zhang</creator><general>Royal Society of Chemistry</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2019</creationdate><title>Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage</title><author>Shen, Man ; Shi Jin Zhu ; Liu, Xiaoying ; Fu, Xin ; Wang Chen Huo ; Xiao Li Liu ; Yu Xiang Chen ; Qian Yuan Shan ; Hong-Chang, Yao ; Yu Xin Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-c2d1e2b016b0c87e1f36c7c12624cc01ce0b9219ca44606d9dfa4e48984533163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Critical point</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Graphene</topic><topic>Hydrothermal crystal growth</topic><topic>Ion currents</topic><topic>Manganese dioxide</topic><topic>Morphology</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Potassium permanganate</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Man</creatorcontrib><creatorcontrib>Shi Jin Zhu</creatorcontrib><creatorcontrib>Liu, Xiaoying</creatorcontrib><creatorcontrib>Fu, Xin</creatorcontrib><creatorcontrib>Wang Chen Huo</creatorcontrib><creatorcontrib>Xiao Li Liu</creatorcontrib><creatorcontrib>Yu Xiang Chen</creatorcontrib><creatorcontrib>Qian Yuan Shan</creatorcontrib><creatorcontrib>Hong-Chang, Yao</creatorcontrib><creatorcontrib>Yu Xin Zhang</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Man</au><au>Shi Jin Zhu</au><au>Liu, Xiaoying</au><au>Fu, Xin</au><au>Wang Chen Huo</au><au>Xiao Li Liu</au><au>Yu Xiang Chen</au><au>Qian Yuan Shan</au><au>Hong-Chang, Yao</au><au>Yu Xin Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage</atitle><jtitle>CrystEngComm</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>35</issue><spage>5322</spage><epage>5331</epage><pages>5322-5331</pages><eissn>1466-8033</eissn><abstract>In this work, a series of MnO2 nanostructures with different crystallographic structures, including δ-MnO2 nanotubes and α-MnO2 nanorods, were prepared using polycarbonate membrane as a template. The crystallographic structure and morphology were controlled by adjusting the pH of the KMnO4 solutions via a one-step hydrothermal method. The crystal form of the samples changed from birnessite to α-MnO2 with the decrease in the applied pH values and a precise pH value for the critical point was found. When used as positive electrode materials in the supercapacitor, the structure prepared in the higher pH value solutions (MnO2-12, pH = 12) with a δ-type crystallographic structure gave an ideal specific capacitance of 364.1 F g−1 at a current density of 0.5 A g−1, a good rate capability, and a favorable cycling stability. An asymmetric supercapacitor assembled with MnO2-12 as the positive electrode and activated graphene (AG) as the negative electrode produced an energy density of 29.4 W h kg−1 at a power density of 248.9 W kg−1. The excellent electrochemical properties were attributed to the novel tubular structure composed of poor crystalline δ-MnO2 nanosheets, resulting in a high ionic conductivity and two-sided reaction surfaces.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ce00865a</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1466-8033 |
ispartof | CrystEngComm, 2019, Vol.21 (35), p.5322-5331 |
issn | 1466-8033 |
language | eng |
recordid | cdi_proquest_journals_2287040441 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Critical point Crystal structure Crystallography Electrochemical analysis Electrode materials Electrodes Energy storage Flux density Graphene Hydrothermal crystal growth Ion currents Manganese dioxide Morphology Nanorods Nanostructure Potassium permanganate Supercapacitors |
title | Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20and%20morphology%20controlled%20polymorphic%20MnO2%20nanostructures%20for%20electrochemical%20energy%20storage&rft.jtitle=CrystEngComm&rft.au=Shen,%20Man&rft.date=2019&rft.volume=21&rft.issue=35&rft.spage=5322&rft.epage=5331&rft.pages=5322-5331&rft.eissn=1466-8033&rft_id=info:doi/10.1039/c9ce00865a&rft_dat=%3Cproquest%3E2287040441%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287040441&rft_id=info:pmid/&rfr_iscdi=true |