Pre‐NQ Manifolds and Correspondence Spaces: the Nilmanifold Example

Courant algebroids correspond to degree‐2 symplectic differential graded manifolds or NQ‐manifolds for short. We review how a similar construction shows that locally the gauge structure of Double Field Theory corresponds to degree‐2 symplectic pre‐NQ manifolds. To illustrate first steps towards a gl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fortschritte der Physik 2019-08, Vol.67 (8-9), p.n/a
1. Verfasser: Deser, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8-9
container_start_page
container_title Fortschritte der Physik
container_volume 67
creator Deser, Andreas
description Courant algebroids correspond to degree‐2 symplectic differential graded manifolds or NQ‐manifolds for short. We review how a similar construction shows that locally the gauge structure of Double Field Theory corresponds to degree‐2 symplectic pre‐NQ manifolds. To illustrate first steps towards a global understanding of the pre‐NQ case, we apply the local constructions to 3‐dimensional nilmanifolds carrying an abelian gerbe. These are among prime examples where T‐duality is well‐understood and allow us to investigate classic results in the graded language. This article explains how the local gauge structures of Double Field Theory is captured by particular symplectic pre‐NQ manifolds. Furthermore, first steps towards a global understanding of Double Field Theory are presented.
doi_str_mv 10.1002/prop.201910006
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2287017115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287017115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1236-be7995da6b4b4af7d73f5122462059fefea6f7c9a4cee66d99929c933dc7f8873</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoOFa3rgOup-Yyk0zcSakXqG29rUOanOCUuZm0aHc-gs_okzilpaufHz7O4f8QuqRkSAlh111ouyEjVPWNiCOU0JzRlCtZHKOEEJqnBSPFKTqLcdkTrAcTNJ4H-Pv5nT7jJ9OUvq1cxKZxeNSGALFrGweNBfzaGQvxBq8-AE_Lqt6zePxt6q6Cc3TiTRXhYp8D9H43fhs9pJPZ_ePodpJayrhIFyCVyp0Ri2yRGS-d5D6njGWCkVx58GCEl1aZzAII4ZRSTFnFubPSF4XkA3S1u9tv_VxDXOlluw5N_1IzVkhCJaV5T6kd9VVWsNFdKGsTNpoSvfWkt570wZOev8zmh8b_AcC0Xwk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287017115</pqid></control><display><type>article</type><title>Pre‐NQ Manifolds and Correspondence Spaces: the Nilmanifold Example</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Deser, Andreas</creator><creatorcontrib>Deser, Andreas</creatorcontrib><description>Courant algebroids correspond to degree‐2 symplectic differential graded manifolds or NQ‐manifolds for short. We review how a similar construction shows that locally the gauge structure of Double Field Theory corresponds to degree‐2 symplectic pre‐NQ manifolds. To illustrate first steps towards a global understanding of the pre‐NQ case, we apply the local constructions to 3‐dimensional nilmanifolds carrying an abelian gerbe. These are among prime examples where T‐duality is well‐understood and allow us to investigate classic results in the graded language. This article explains how the local gauge structures of Double Field Theory is captured by particular symplectic pre‐NQ manifolds. Furthermore, first steps towards a global understanding of Double Field Theory are presented.</description><identifier>ISSN: 0015-8208</identifier><identifier>EISSN: 1521-3978</identifier><identifier>DOI: 10.1002/prop.201910006</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>correspondence space ; Courant algebroid ; derived bracket ; double field theory ; Field theory ; nilmanifold ; pre‐NQ manifold ; T‐duality</subject><ispartof>Fortschritte der Physik, 2019-08, Vol.67 (8-9), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim. All rights reserved</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1236-be7995da6b4b4af7d73f5122462059fefea6f7c9a4cee66d99929c933dc7f8873</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprop.201910006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprop.201910006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Deser, Andreas</creatorcontrib><title>Pre‐NQ Manifolds and Correspondence Spaces: the Nilmanifold Example</title><title>Fortschritte der Physik</title><description>Courant algebroids correspond to degree‐2 symplectic differential graded manifolds or NQ‐manifolds for short. We review how a similar construction shows that locally the gauge structure of Double Field Theory corresponds to degree‐2 symplectic pre‐NQ manifolds. To illustrate first steps towards a global understanding of the pre‐NQ case, we apply the local constructions to 3‐dimensional nilmanifolds carrying an abelian gerbe. These are among prime examples where T‐duality is well‐understood and allow us to investigate classic results in the graded language. This article explains how the local gauge structures of Double Field Theory is captured by particular symplectic pre‐NQ manifolds. Furthermore, first steps towards a global understanding of Double Field Theory are presented.</description><subject>correspondence space</subject><subject>Courant algebroid</subject><subject>derived bracket</subject><subject>double field theory</subject><subject>Field theory</subject><subject>nilmanifold</subject><subject>pre‐NQ manifold</subject><subject>T‐duality</subject><issn>0015-8208</issn><issn>1521-3978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kMtKAzEUhoMoOFa3rgOup-Yyk0zcSakXqG29rUOanOCUuZm0aHc-gs_okzilpaufHz7O4f8QuqRkSAlh111ouyEjVPWNiCOU0JzRlCtZHKOEEJqnBSPFKTqLcdkTrAcTNJ4H-Pv5nT7jJ9OUvq1cxKZxeNSGALFrGweNBfzaGQvxBq8-AE_Lqt6zePxt6q6Cc3TiTRXhYp8D9H43fhs9pJPZ_ePodpJayrhIFyCVyp0Ri2yRGS-d5D6njGWCkVx58GCEl1aZzAII4ZRSTFnFubPSF4XkA3S1u9tv_VxDXOlluw5N_1IzVkhCJaV5T6kd9VVWsNFdKGsTNpoSvfWkt570wZOev8zmh8b_AcC0Xwk</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Deser, Andreas</creator><general>Wiley Subscription Services, Inc</general><scope/></search><sort><creationdate>201908</creationdate><title>Pre‐NQ Manifolds and Correspondence Spaces: the Nilmanifold Example</title><author>Deser, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1236-be7995da6b4b4af7d73f5122462059fefea6f7c9a4cee66d99929c933dc7f8873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>correspondence space</topic><topic>Courant algebroid</topic><topic>derived bracket</topic><topic>double field theory</topic><topic>Field theory</topic><topic>nilmanifold</topic><topic>pre‐NQ manifold</topic><topic>T‐duality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deser, Andreas</creatorcontrib><jtitle>Fortschritte der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deser, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre‐NQ Manifolds and Correspondence Spaces: the Nilmanifold Example</atitle><jtitle>Fortschritte der Physik</jtitle><date>2019-08</date><risdate>2019</risdate><volume>67</volume><issue>8-9</issue><epage>n/a</epage><issn>0015-8208</issn><eissn>1521-3978</eissn><abstract>Courant algebroids correspond to degree‐2 symplectic differential graded manifolds or NQ‐manifolds for short. We review how a similar construction shows that locally the gauge structure of Double Field Theory corresponds to degree‐2 symplectic pre‐NQ manifolds. To illustrate first steps towards a global understanding of the pre‐NQ case, we apply the local constructions to 3‐dimensional nilmanifolds carrying an abelian gerbe. These are among prime examples where T‐duality is well‐understood and allow us to investigate classic results in the graded language. This article explains how the local gauge structures of Double Field Theory is captured by particular symplectic pre‐NQ manifolds. Furthermore, first steps towards a global understanding of Double Field Theory are presented.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/prop.201910006</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-8208
ispartof Fortschritte der Physik, 2019-08, Vol.67 (8-9), p.n/a
issn 0015-8208
1521-3978
language eng
recordid cdi_proquest_journals_2287017115
source Wiley Online Library - AutoHoldings Journals
subjects correspondence space
Courant algebroid
derived bracket
double field theory
Field theory
nilmanifold
pre‐NQ manifold
T‐duality
title Pre‐NQ Manifolds and Correspondence Spaces: the Nilmanifold Example
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre%E2%80%90NQ%20Manifolds%20and%20Correspondence%20Spaces:%20the%20Nilmanifold%20Example&rft.jtitle=Fortschritte%20der%20Physik&rft.au=Deser,%20Andreas&rft.date=2019-08&rft.volume=67&rft.issue=8-9&rft.epage=n/a&rft.issn=0015-8208&rft.eissn=1521-3978&rft_id=info:doi/10.1002/prop.201910006&rft_dat=%3Cproquest_wiley%3E2287017115%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287017115&rft_id=info:pmid/&rfr_iscdi=true