Pre‐NQ Manifolds and Correspondence Spaces: the Nilmanifold Example
Courant algebroids correspond to degree‐2 symplectic differential graded manifolds or NQ‐manifolds for short. We review how a similar construction shows that locally the gauge structure of Double Field Theory corresponds to degree‐2 symplectic pre‐NQ manifolds. To illustrate first steps towards a gl...
Gespeichert in:
Veröffentlicht in: | Fortschritte der Physik 2019-08, Vol.67 (8-9), p.n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8-9 |
container_start_page | |
container_title | Fortschritte der Physik |
container_volume | 67 |
creator | Deser, Andreas |
description | Courant algebroids correspond to degree‐2 symplectic differential graded manifolds or NQ‐manifolds for short. We review how a similar construction shows that locally the gauge structure of Double Field Theory corresponds to degree‐2 symplectic pre‐NQ manifolds. To illustrate first steps towards a global understanding of the pre‐NQ case, we apply the local constructions to 3‐dimensional nilmanifolds carrying an abelian gerbe. These are among prime examples where T‐duality is well‐understood and allow us to investigate classic results in the graded language.
This article explains how the local gauge structures of Double Field Theory is captured by particular symplectic pre‐NQ manifolds. Furthermore, first steps towards a global understanding of Double Field Theory are presented. |
doi_str_mv | 10.1002/prop.201910006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2287017115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287017115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1236-be7995da6b4b4af7d73f5122462059fefea6f7c9a4cee66d99929c933dc7f8873</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoOFa3rgOup-Yyk0zcSakXqG29rUOanOCUuZm0aHc-gs_okzilpaufHz7O4f8QuqRkSAlh111ouyEjVPWNiCOU0JzRlCtZHKOEEJqnBSPFKTqLcdkTrAcTNJ4H-Pv5nT7jJ9OUvq1cxKZxeNSGALFrGweNBfzaGQvxBq8-AE_Lqt6zePxt6q6Cc3TiTRXhYp8D9H43fhs9pJPZ_ePodpJayrhIFyCVyp0Ri2yRGS-d5D6njGWCkVx58GCEl1aZzAII4ZRSTFnFubPSF4XkA3S1u9tv_VxDXOlluw5N_1IzVkhCJaV5T6kd9VVWsNFdKGsTNpoSvfWkt570wZOev8zmh8b_AcC0Xwk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287017115</pqid></control><display><type>article</type><title>Pre‐NQ Manifolds and Correspondence Spaces: the Nilmanifold Example</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Deser, Andreas</creator><creatorcontrib>Deser, Andreas</creatorcontrib><description>Courant algebroids correspond to degree‐2 symplectic differential graded manifolds or NQ‐manifolds for short. We review how a similar construction shows that locally the gauge structure of Double Field Theory corresponds to degree‐2 symplectic pre‐NQ manifolds. To illustrate first steps towards a global understanding of the pre‐NQ case, we apply the local constructions to 3‐dimensional nilmanifolds carrying an abelian gerbe. These are among prime examples where T‐duality is well‐understood and allow us to investigate classic results in the graded language.
This article explains how the local gauge structures of Double Field Theory is captured by particular symplectic pre‐NQ manifolds. Furthermore, first steps towards a global understanding of Double Field Theory are presented.</description><identifier>ISSN: 0015-8208</identifier><identifier>EISSN: 1521-3978</identifier><identifier>DOI: 10.1002/prop.201910006</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>correspondence space ; Courant algebroid ; derived bracket ; double field theory ; Field theory ; nilmanifold ; pre‐NQ manifold ; T‐duality</subject><ispartof>Fortschritte der Physik, 2019-08, Vol.67 (8-9), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1236-be7995da6b4b4af7d73f5122462059fefea6f7c9a4cee66d99929c933dc7f8873</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprop.201910006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprop.201910006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Deser, Andreas</creatorcontrib><title>Pre‐NQ Manifolds and Correspondence Spaces: the Nilmanifold Example</title><title>Fortschritte der Physik</title><description>Courant algebroids correspond to degree‐2 symplectic differential graded manifolds or NQ‐manifolds for short. We review how a similar construction shows that locally the gauge structure of Double Field Theory corresponds to degree‐2 symplectic pre‐NQ manifolds. To illustrate first steps towards a global understanding of the pre‐NQ case, we apply the local constructions to 3‐dimensional nilmanifolds carrying an abelian gerbe. These are among prime examples where T‐duality is well‐understood and allow us to investigate classic results in the graded language.
This article explains how the local gauge structures of Double Field Theory is captured by particular symplectic pre‐NQ manifolds. Furthermore, first steps towards a global understanding of Double Field Theory are presented.</description><subject>correspondence space</subject><subject>Courant algebroid</subject><subject>derived bracket</subject><subject>double field theory</subject><subject>Field theory</subject><subject>nilmanifold</subject><subject>pre‐NQ manifold</subject><subject>T‐duality</subject><issn>0015-8208</issn><issn>1521-3978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kMtKAzEUhoMoOFa3rgOup-Yyk0zcSakXqG29rUOanOCUuZm0aHc-gs_okzilpaufHz7O4f8QuqRkSAlh111ouyEjVPWNiCOU0JzRlCtZHKOEEJqnBSPFKTqLcdkTrAcTNJ4H-Pv5nT7jJ9OUvq1cxKZxeNSGALFrGweNBfzaGQvxBq8-AE_Lqt6zePxt6q6Cc3TiTRXhYp8D9H43fhs9pJPZ_ePodpJayrhIFyCVyp0Ri2yRGS-d5D6njGWCkVx58GCEl1aZzAII4ZRSTFnFubPSF4XkA3S1u9tv_VxDXOlluw5N_1IzVkhCJaV5T6kd9VVWsNFdKGsTNpoSvfWkt570wZOev8zmh8b_AcC0Xwk</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Deser, Andreas</creator><general>Wiley Subscription Services, Inc</general><scope/></search><sort><creationdate>201908</creationdate><title>Pre‐NQ Manifolds and Correspondence Spaces: the Nilmanifold Example</title><author>Deser, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1236-be7995da6b4b4af7d73f5122462059fefea6f7c9a4cee66d99929c933dc7f8873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>correspondence space</topic><topic>Courant algebroid</topic><topic>derived bracket</topic><topic>double field theory</topic><topic>Field theory</topic><topic>nilmanifold</topic><topic>pre‐NQ manifold</topic><topic>T‐duality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deser, Andreas</creatorcontrib><jtitle>Fortschritte der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deser, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre‐NQ Manifolds and Correspondence Spaces: the Nilmanifold Example</atitle><jtitle>Fortschritte der Physik</jtitle><date>2019-08</date><risdate>2019</risdate><volume>67</volume><issue>8-9</issue><epage>n/a</epage><issn>0015-8208</issn><eissn>1521-3978</eissn><abstract>Courant algebroids correspond to degree‐2 symplectic differential graded manifolds or NQ‐manifolds for short. We review how a similar construction shows that locally the gauge structure of Double Field Theory corresponds to degree‐2 symplectic pre‐NQ manifolds. To illustrate first steps towards a global understanding of the pre‐NQ case, we apply the local constructions to 3‐dimensional nilmanifolds carrying an abelian gerbe. These are among prime examples where T‐duality is well‐understood and allow us to investigate classic results in the graded language.
This article explains how the local gauge structures of Double Field Theory is captured by particular symplectic pre‐NQ manifolds. Furthermore, first steps towards a global understanding of Double Field Theory are presented.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/prop.201910006</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-8208 |
ispartof | Fortschritte der Physik, 2019-08, Vol.67 (8-9), p.n/a |
issn | 0015-8208 1521-3978 |
language | eng |
recordid | cdi_proquest_journals_2287017115 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | correspondence space Courant algebroid derived bracket double field theory Field theory nilmanifold pre‐NQ manifold T‐duality |
title | Pre‐NQ Manifolds and Correspondence Spaces: the Nilmanifold Example |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre%E2%80%90NQ%20Manifolds%20and%20Correspondence%20Spaces:%20the%20Nilmanifold%20Example&rft.jtitle=Fortschritte%20der%20Physik&rft.au=Deser,%20Andreas&rft.date=2019-08&rft.volume=67&rft.issue=8-9&rft.epage=n/a&rft.issn=0015-8208&rft.eissn=1521-3978&rft_id=info:doi/10.1002/prop.201910006&rft_dat=%3Cproquest_wiley%3E2287017115%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287017115&rft_id=info:pmid/&rfr_iscdi=true |