Detector With Focus: Normalizing Gradient In Image Pyramid
An image pyramid can extend many object detection algorithms to solve detection on multiple scales. However, interpolation during the resampling process of an image pyramid causes gradient variation, which is the difference of the gradients between the original image and the scaled images. Our key i...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kim, Yonghyun Bong-Nam Kang Kim, Daijin |
description | An image pyramid can extend many object detection algorithms to solve detection on multiple scales. However, interpolation during the resampling process of an image pyramid causes gradient variation, which is the difference of the gradients between the original image and the scaled images. Our key insight is that the increased variance of gradients makes the classifiers have difficulty in correctly assigning categories. We prove the existence of the gradient variation by formulating the ratio of gradient expectations between an original image and scaled images, then propose a simple and novel gradient normalization method to eliminate the effect of this variation. The proposed normalization method reduce the variance in an image pyramid and allow the classifier to focus on a smaller coverage. We show the improvement in three different visual recognition problems: pedestrian detection, pose estimation, and object detection. The method is generally applicable to many vision algorithms based on an image pyramid with gradients. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2285412909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2285412909</sourcerecordid><originalsourceid>FETCH-proquest_journals_22854129093</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwckktSU0uyS9SCM8syVBwy08uLbZS8Msvyk3MyazKzEtXcC9KTMlMzStR8MxT8MxNTE9VCKgsSszNTOFhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjIwtTE0MjSwNLY-JUAQBz6DYr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285412909</pqid></control><display><type>article</type><title>Detector With Focus: Normalizing Gradient In Image Pyramid</title><source>Free E- Journals</source><creator>Kim, Yonghyun ; Bong-Nam Kang ; Kim, Daijin</creator><creatorcontrib>Kim, Yonghyun ; Bong-Nam Kang ; Kim, Daijin</creatorcontrib><description>An image pyramid can extend many object detection algorithms to solve detection on multiple scales. However, interpolation during the resampling process of an image pyramid causes gradient variation, which is the difference of the gradients between the original image and the scaled images. Our key insight is that the increased variance of gradients makes the classifiers have difficulty in correctly assigning categories. We prove the existence of the gradient variation by formulating the ratio of gradient expectations between an original image and scaled images, then propose a simple and novel gradient normalization method to eliminate the effect of this variation. The proposed normalization method reduce the variance in an image pyramid and allow the classifier to focus on a smaller coverage. We show the improvement in three different visual recognition problems: pedestrian detection, pose estimation, and object detection. The method is generally applicable to many vision algorithms based on an image pyramid with gradients.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Classifiers ; Computer vision ; Image detection ; Interpolation ; Normalizing ; Object recognition ; Resampling</subject><ispartof>arXiv.org, 2019-09</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kim, Yonghyun</creatorcontrib><creatorcontrib>Bong-Nam Kang</creatorcontrib><creatorcontrib>Kim, Daijin</creatorcontrib><title>Detector With Focus: Normalizing Gradient In Image Pyramid</title><title>arXiv.org</title><description>An image pyramid can extend many object detection algorithms to solve detection on multiple scales. However, interpolation during the resampling process of an image pyramid causes gradient variation, which is the difference of the gradients between the original image and the scaled images. Our key insight is that the increased variance of gradients makes the classifiers have difficulty in correctly assigning categories. We prove the existence of the gradient variation by formulating the ratio of gradient expectations between an original image and scaled images, then propose a simple and novel gradient normalization method to eliminate the effect of this variation. The proposed normalization method reduce the variance in an image pyramid and allow the classifier to focus on a smaller coverage. We show the improvement in three different visual recognition problems: pedestrian detection, pose estimation, and object detection. The method is generally applicable to many vision algorithms based on an image pyramid with gradients.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Computer vision</subject><subject>Image detection</subject><subject>Interpolation</subject><subject>Normalizing</subject><subject>Object recognition</subject><subject>Resampling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwckktSU0uyS9SCM8syVBwy08uLbZS8Msvyk3MyazKzEtXcC9KTMlMzStR8MxT8MxNTE9VCKgsSszNTOFhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjIwtTE0MjSwNLY-JUAQBz6DYr</recordid><startdate>20190905</startdate><enddate>20190905</enddate><creator>Kim, Yonghyun</creator><creator>Bong-Nam Kang</creator><creator>Kim, Daijin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190905</creationdate><title>Detector With Focus: Normalizing Gradient In Image Pyramid</title><author>Kim, Yonghyun ; Bong-Nam Kang ; Kim, Daijin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22854129093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Computer vision</topic><topic>Image detection</topic><topic>Interpolation</topic><topic>Normalizing</topic><topic>Object recognition</topic><topic>Resampling</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yonghyun</creatorcontrib><creatorcontrib>Bong-Nam Kang</creatorcontrib><creatorcontrib>Kim, Daijin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yonghyun</au><au>Bong-Nam Kang</au><au>Kim, Daijin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Detector With Focus: Normalizing Gradient In Image Pyramid</atitle><jtitle>arXiv.org</jtitle><date>2019-09-05</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>An image pyramid can extend many object detection algorithms to solve detection on multiple scales. However, interpolation during the resampling process of an image pyramid causes gradient variation, which is the difference of the gradients between the original image and the scaled images. Our key insight is that the increased variance of gradients makes the classifiers have difficulty in correctly assigning categories. We prove the existence of the gradient variation by formulating the ratio of gradient expectations between an original image and scaled images, then propose a simple and novel gradient normalization method to eliminate the effect of this variation. The proposed normalization method reduce the variance in an image pyramid and allow the classifier to focus on a smaller coverage. We show the improvement in three different visual recognition problems: pedestrian detection, pose estimation, and object detection. The method is generally applicable to many vision algorithms based on an image pyramid with gradients.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2285412909 |
source | Free E- Journals |
subjects | Algorithms Classifiers Computer vision Image detection Interpolation Normalizing Object recognition Resampling |
title | Detector With Focus: Normalizing Gradient In Image Pyramid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Detector%20With%20Focus:%20Normalizing%20Gradient%20In%20Image%20Pyramid&rft.jtitle=arXiv.org&rft.au=Kim,%20Yonghyun&rft.date=2019-09-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2285412909%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285412909&rft_id=info:pmid/&rfr_iscdi=true |