Deep CNNs for Object Detection Using Passive Millimeter Sensors

Passive millimeter wave images (PMMWIs) can be used to detect and localize objects concealed under clothing. Unfortunately, the quality of the acquired images and the unknown position, shape, and size of the hidden objects render these tasks challenging. In this paper, we discuss a deep learning app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2019-09, Vol.29 (9), p.2580-2589
Hauptverfasser: Lopez-Tapia, Santiago, Molina, Rafael, de la Blanca, Nicolas Perez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Passive millimeter wave images (PMMWIs) can be used to detect and localize objects concealed under clothing. Unfortunately, the quality of the acquired images and the unknown position, shape, and size of the hidden objects render these tasks challenging. In this paper, we discuss a deep learning approach to this detection/localization problem. The effect of the nonstationary acquisition noise on different architectures is analyzed and discussed. A comparison with shallow architectures is also presented. The achieved detection accuracy defines a new state of the art in object detection on PMMWIs. The low computational training and testing costs of the solution allow its use in real-time applications.
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2017.2774927