Electronic Medical Record Context Signatures Improve Diagnostic Classification Using Medical Image Computing
Composite models that combine medical imaging with electronic medical records (EMR) improve predictive power when compared to traditional models that use imaging alone. The digitization of EMR provides potential access to a wealth of medical information, but presents new challenges in algorithm desi...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2019-09, Vol.23 (5), p.2052-2062 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2062 |
---|---|
container_issue | 5 |
container_start_page | 2052 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 23 |
creator | Chaganti, Shikha Mawn, Louise A. Kang, Hakmook Egan, Josephine Resnick, Susan M. Beason-Held, Lori L. Landman, Bennett A. Lasko, Thomas A. |
description | Composite models that combine medical imaging with electronic medical records (EMR) improve predictive power when compared to traditional models that use imaging alone. The digitization of EMR provides potential access to a wealth of medical information, but presents new challenges in algorithm design and inference. Previous studies, such as Phenome Wide Association Study (PheWAS), have shown that EMR data can be used to investigate the relationship between genotypes and clinical conditions. Here, we introduce Phenome-Disease Association Study to extend the statistical capabilities of the PheWAS software through a custom Python package, which creates diagnostic EMR signatures to capture system-wide co-morbidities for a disease population within a given time interval. We investigate the effect of integrating these EMR signatures with radiological data to improve diagnostic classification in disease domains known to have confounding factors because of variable and complex clinical presentation. Specifically, we focus on two studies: First, a study of four major optic nerve related conditions; and second, a study of diabetes. Addition of EMR signature vectors to radiologically derived structural metrics improves the area under the curve (AUC) for diagnostic classification using elastic net regression, for diseases of the optic nerve. For glaucoma, the AUC improves from 0.71 to 0.83, for intrinsic optic nerve disease it increases from 0.72 to 0.91, for optic nerve edema it increases from 0.95 to 0.96, and for thyroid eye disease from 0.79 to 0.89. The EMR signatures recapitulate known comorbidities with diabetes, such as abnormal glucose, but do not significantly modulate image-derived features. In summary, EMR signatures present a scalable and readily applicable. |
doi_str_mv | 10.1109/JBHI.2018.2890084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2285332534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8594672</ieee_id><sourcerecordid>2285332534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-afeb27772c985d4b1fd638e6a9e99cfd57f5329fe9d856cc4188b72612f389c33</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxYMottR-ABFkwBdfds2_ySQvgq6tXakIap9DNnMzpswk2yRT7Lc3y24XNS8J9_7O4d4chF4SvCQEq3dfPl6tlxQTuaRSYSz5E3RKiZALSrF8-vgmip-g85xvcT2ylpR4jk4YFphyKk_ReDGCLSkGb5uv0HtrxuY72Jj6ZhVDgd-l-eGHYMqcIDfraZviPTSfvBlCzKWKVqPJ2bsqLD6G5ib7MByd1pMZoBpN27nU-gv0zJkxw_nhPkM3lxc_V1eL62-f16sP1wvLeVcWxsGGdl1HrZJtzzfE9YJJEEaBUtb1bedaRpUD1ctWWMuJlJuOCkIdk8oydobe732382aC3kIoyYx6m_xk0oOOxut_O8H_0kO810JyThStBm8PBinezZCLnny2MI4mQJyzrn_LMMFdSyr65j_0Ns4p1PU0pbJljLaMV4rsKZtizgnccRiC9S5OvYtT7-LUhzir5vXfWxwVj-FV4NUe8ABwbMtWcdFR9gefS6VC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285332534</pqid></control><display><type>article</type><title>Electronic Medical Record Context Signatures Improve Diagnostic Classification Using Medical Image Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Chaganti, Shikha ; Mawn, Louise A. ; Kang, Hakmook ; Egan, Josephine ; Resnick, Susan M. ; Beason-Held, Lori L. ; Landman, Bennett A. ; Lasko, Thomas A.</creator><creatorcontrib>Chaganti, Shikha ; Mawn, Louise A. ; Kang, Hakmook ; Egan, Josephine ; Resnick, Susan M. ; Beason-Held, Lori L. ; Landman, Bennett A. ; Lasko, Thomas A.</creatorcontrib><description>Composite models that combine medical imaging with electronic medical records (EMR) improve predictive power when compared to traditional models that use imaging alone. The digitization of EMR provides potential access to a wealth of medical information, but presents new challenges in algorithm design and inference. Previous studies, such as Phenome Wide Association Study (PheWAS), have shown that EMR data can be used to investigate the relationship between genotypes and clinical conditions. Here, we introduce Phenome-Disease Association Study to extend the statistical capabilities of the PheWAS software through a custom Python package, which creates diagnostic EMR signatures to capture system-wide co-morbidities for a disease population within a given time interval. We investigate the effect of integrating these EMR signatures with radiological data to improve diagnostic classification in disease domains known to have confounding factors because of variable and complex clinical presentation. Specifically, we focus on two studies: First, a study of four major optic nerve related conditions; and second, a study of diabetes. Addition of EMR signature vectors to radiologically derived structural metrics improves the area under the curve (AUC) for diagnostic classification using elastic net regression, for diseases of the optic nerve. For glaucoma, the AUC improves from 0.71 to 0.83, for intrinsic optic nerve disease it increases from 0.72 to 0.91, for optic nerve edema it increases from 0.95 to 0.96, and for thyroid eye disease from 0.79 to 0.89. The EMR signatures recapitulate known comorbidities with diabetes, such as abnormal glucose, but do not significantly modulate image-derived features. In summary, EMR signatures present a scalable and readily applicable.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2018.2890084</identifier><identifier>PMID: 30602428</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biomedical optical imaging ; Classification ; Diabetes ; Diabetes mellitus ; Diagnosis, Computer-Assisted - methods ; Diagnostic Imaging - methods ; Diagnostic software ; Diagnostic systems ; Digitization ; Diseases ; Domains ; Edema ; Electronic health records ; Electronic Health Records - classification ; Electronic medical records ; Eye diseases ; Genotypes ; Glaucoma ; Humans ; Image classification ; Image Interpretation, Computer-Assisted ; Integrated optics ; Medical diagnosis ; Medical imaging ; Medical records ; MRI ; Optic nerve ; Optic Nerve - diagnostic imaging ; Optic Nerve Diseases - diagnostic imaging ; Optical imaging ; Signatures ; Software ; Statistical analysis ; Thyroid</subject><ispartof>IEEE journal of biomedical and health informatics, 2019-09, Vol.23 (5), p.2052-2062</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-afeb27772c985d4b1fd638e6a9e99cfd57f5329fe9d856cc4188b72612f389c33</citedby><cites>FETCH-LOGICAL-c447t-afeb27772c985d4b1fd638e6a9e99cfd57f5329fe9d856cc4188b72612f389c33</cites><orcidid>0000-0001-5733-2127 ; 0000-0003-2300-9529 ; 0000-0001-6876-4021 ; 0000-0002-7029-2665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8594672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8594672$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30602428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaganti, Shikha</creatorcontrib><creatorcontrib>Mawn, Louise A.</creatorcontrib><creatorcontrib>Kang, Hakmook</creatorcontrib><creatorcontrib>Egan, Josephine</creatorcontrib><creatorcontrib>Resnick, Susan M.</creatorcontrib><creatorcontrib>Beason-Held, Lori L.</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Lasko, Thomas A.</creatorcontrib><title>Electronic Medical Record Context Signatures Improve Diagnostic Classification Using Medical Image Computing</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Composite models that combine medical imaging with electronic medical records (EMR) improve predictive power when compared to traditional models that use imaging alone. The digitization of EMR provides potential access to a wealth of medical information, but presents new challenges in algorithm design and inference. Previous studies, such as Phenome Wide Association Study (PheWAS), have shown that EMR data can be used to investigate the relationship between genotypes and clinical conditions. Here, we introduce Phenome-Disease Association Study to extend the statistical capabilities of the PheWAS software through a custom Python package, which creates diagnostic EMR signatures to capture system-wide co-morbidities for a disease population within a given time interval. We investigate the effect of integrating these EMR signatures with radiological data to improve diagnostic classification in disease domains known to have confounding factors because of variable and complex clinical presentation. Specifically, we focus on two studies: First, a study of four major optic nerve related conditions; and second, a study of diabetes. Addition of EMR signature vectors to radiologically derived structural metrics improves the area under the curve (AUC) for diagnostic classification using elastic net regression, for diseases of the optic nerve. For glaucoma, the AUC improves from 0.71 to 0.83, for intrinsic optic nerve disease it increases from 0.72 to 0.91, for optic nerve edema it increases from 0.95 to 0.96, and for thyroid eye disease from 0.79 to 0.89. The EMR signatures recapitulate known comorbidities with diabetes, such as abnormal glucose, but do not significantly modulate image-derived features. In summary, EMR signatures present a scalable and readily applicable.</description><subject>Algorithms</subject><subject>Biomedical optical imaging</subject><subject>Classification</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnostic Imaging - methods</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Digitization</subject><subject>Diseases</subject><subject>Domains</subject><subject>Edema</subject><subject>Electronic health records</subject><subject>Electronic Health Records - classification</subject><subject>Electronic medical records</subject><subject>Eye diseases</subject><subject>Genotypes</subject><subject>Glaucoma</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Integrated optics</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medical records</subject><subject>MRI</subject><subject>Optic nerve</subject><subject>Optic Nerve - diagnostic imaging</subject><subject>Optic Nerve Diseases - diagnostic imaging</subject><subject>Optical imaging</subject><subject>Signatures</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Thyroid</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkV9rFDEUxYMottR-ABFkwBdfds2_ySQvgq6tXakIap9DNnMzpswk2yRT7Lc3y24XNS8J9_7O4d4chF4SvCQEq3dfPl6tlxQTuaRSYSz5E3RKiZALSrF8-vgmip-g85xvcT2ylpR4jk4YFphyKk_ReDGCLSkGb5uv0HtrxuY72Jj6ZhVDgd-l-eGHYMqcIDfraZviPTSfvBlCzKWKVqPJ2bsqLD6G5ib7MByd1pMZoBpN27nU-gv0zJkxw_nhPkM3lxc_V1eL62-f16sP1wvLeVcWxsGGdl1HrZJtzzfE9YJJEEaBUtb1bedaRpUD1ctWWMuJlJuOCkIdk8oydobe732382aC3kIoyYx6m_xk0oOOxut_O8H_0kO810JyThStBm8PBinezZCLnny2MI4mQJyzrn_LMMFdSyr65j_0Ns4p1PU0pbJljLaMV4rsKZtizgnccRiC9S5OvYtT7-LUhzir5vXfWxwVj-FV4NUe8ABwbMtWcdFR9gefS6VC</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Chaganti, Shikha</creator><creator>Mawn, Louise A.</creator><creator>Kang, Hakmook</creator><creator>Egan, Josephine</creator><creator>Resnick, Susan M.</creator><creator>Beason-Held, Lori L.</creator><creator>Landman, Bennett A.</creator><creator>Lasko, Thomas A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5733-2127</orcidid><orcidid>https://orcid.org/0000-0003-2300-9529</orcidid><orcidid>https://orcid.org/0000-0001-6876-4021</orcidid><orcidid>https://orcid.org/0000-0002-7029-2665</orcidid></search><sort><creationdate>20190901</creationdate><title>Electronic Medical Record Context Signatures Improve Diagnostic Classification Using Medical Image Computing</title><author>Chaganti, Shikha ; Mawn, Louise A. ; Kang, Hakmook ; Egan, Josephine ; Resnick, Susan M. ; Beason-Held, Lori L. ; Landman, Bennett A. ; Lasko, Thomas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-afeb27772c985d4b1fd638e6a9e99cfd57f5329fe9d856cc4188b72612f389c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Biomedical optical imaging</topic><topic>Classification</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnostic Imaging - methods</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Digitization</topic><topic>Diseases</topic><topic>Domains</topic><topic>Edema</topic><topic>Electronic health records</topic><topic>Electronic Health Records - classification</topic><topic>Electronic medical records</topic><topic>Eye diseases</topic><topic>Genotypes</topic><topic>Glaucoma</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Integrated optics</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medical records</topic><topic>MRI</topic><topic>Optic nerve</topic><topic>Optic Nerve - diagnostic imaging</topic><topic>Optic Nerve Diseases - diagnostic imaging</topic><topic>Optical imaging</topic><topic>Signatures</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Thyroid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaganti, Shikha</creatorcontrib><creatorcontrib>Mawn, Louise A.</creatorcontrib><creatorcontrib>Kang, Hakmook</creatorcontrib><creatorcontrib>Egan, Josephine</creatorcontrib><creatorcontrib>Resnick, Susan M.</creatorcontrib><creatorcontrib>Beason-Held, Lori L.</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Lasko, Thomas A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaganti, Shikha</au><au>Mawn, Louise A.</au><au>Kang, Hakmook</au><au>Egan, Josephine</au><au>Resnick, Susan M.</au><au>Beason-Held, Lori L.</au><au>Landman, Bennett A.</au><au>Lasko, Thomas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Medical Record Context Signatures Improve Diagnostic Classification Using Medical Image Computing</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>23</volume><issue>5</issue><spage>2052</spage><epage>2062</epage><pages>2052-2062</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Composite models that combine medical imaging with electronic medical records (EMR) improve predictive power when compared to traditional models that use imaging alone. The digitization of EMR provides potential access to a wealth of medical information, but presents new challenges in algorithm design and inference. Previous studies, such as Phenome Wide Association Study (PheWAS), have shown that EMR data can be used to investigate the relationship between genotypes and clinical conditions. Here, we introduce Phenome-Disease Association Study to extend the statistical capabilities of the PheWAS software through a custom Python package, which creates diagnostic EMR signatures to capture system-wide co-morbidities for a disease population within a given time interval. We investigate the effect of integrating these EMR signatures with radiological data to improve diagnostic classification in disease domains known to have confounding factors because of variable and complex clinical presentation. Specifically, we focus on two studies: First, a study of four major optic nerve related conditions; and second, a study of diabetes. Addition of EMR signature vectors to radiologically derived structural metrics improves the area under the curve (AUC) for diagnostic classification using elastic net regression, for diseases of the optic nerve. For glaucoma, the AUC improves from 0.71 to 0.83, for intrinsic optic nerve disease it increases from 0.72 to 0.91, for optic nerve edema it increases from 0.95 to 0.96, and for thyroid eye disease from 0.79 to 0.89. The EMR signatures recapitulate known comorbidities with diabetes, such as abnormal glucose, but do not significantly modulate image-derived features. In summary, EMR signatures present a scalable and readily applicable.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30602428</pmid><doi>10.1109/JBHI.2018.2890084</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5733-2127</orcidid><orcidid>https://orcid.org/0000-0003-2300-9529</orcidid><orcidid>https://orcid.org/0000-0001-6876-4021</orcidid><orcidid>https://orcid.org/0000-0002-7029-2665</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2019-09, Vol.23 (5), p.2052-2062 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_journals_2285332534 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Biomedical optical imaging Classification Diabetes Diabetes mellitus Diagnosis, Computer-Assisted - methods Diagnostic Imaging - methods Diagnostic software Diagnostic systems Digitization Diseases Domains Edema Electronic health records Electronic Health Records - classification Electronic medical records Eye diseases Genotypes Glaucoma Humans Image classification Image Interpretation, Computer-Assisted Integrated optics Medical diagnosis Medical imaging Medical records MRI Optic nerve Optic Nerve - diagnostic imaging Optic Nerve Diseases - diagnostic imaging Optical imaging Signatures Software Statistical analysis Thyroid |
title | Electronic Medical Record Context Signatures Improve Diagnostic Classification Using Medical Image Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Medical%20Record%20Context%20Signatures%20Improve%20Diagnostic%20Classification%20Using%20Medical%20Image%20Computing&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Chaganti,%20Shikha&rft.date=2019-09-01&rft.volume=23&rft.issue=5&rft.spage=2052&rft.epage=2062&rft.pages=2052-2062&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2018.2890084&rft_dat=%3Cproquest_RIE%3E2285332534%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285332534&rft_id=info:pmid/30602428&rft_ieee_id=8594672&rfr_iscdi=true |