Improved Distance Metrics for Histogram-Based Device-Free Localization
Device-free localization (DFL) systems that rely on the wireless received signal strength indicator (RSSI) metric have been reported in literature for almost a decade. Histogram distance-based DFL (HD-DFL) techniques that operate by constructing RSSI histograms are highly effective as they can local...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2019-10, Vol.19 (19), p.8940-8950 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8950 |
---|---|
container_issue | 19 |
container_start_page | 8940 |
container_title | IEEE sensors journal |
container_volume | 19 |
creator | Konings, Daniel Alam, Fakhrul Noble, Frazer Lai, Edmund M-K. |
description | Device-free localization (DFL) systems that rely on the wireless received signal strength indicator (RSSI) metric have been reported in literature for almost a decade. Histogram distance-based DFL (HD-DFL) techniques that operate by constructing RSSI histograms are highly effective as they can localize stationary and moving people in both outdoor and complex indoor environments. A key step in the histogram approaches is the estimation of the difference between the "long-term" and "short-term" histograms. The existing HD-DFL methods use either Kullback-Leibler or the subsequent improvement, kernel distance, to measure this difference. This paper is the first known work to compare an extensive range of histogram distance metrics within a DFL context and demonstrate how a judicious selection of a distance metric can significantly increase the performance of an HD-DFL system. The results from practical implementation in two different environments show that some distance metrics perform considerably better than the kernel distance when used for existing DFL techniques, such as radio tomographic imaging (RTI) and SpringLoc, with the overall median tracking error reducing by up to 25%. |
doi_str_mv | 10.1109/JSEN.2019.2922772 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2285332345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8736393</ieee_id><sourcerecordid>2285332345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-130ffacbbbd53edbac936ce4c146f8b72daefad47c3ebbe17e0c30590e1c26a93</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aZDabzdGP1laqHlTwFpLsRFLabk22Bf317tLiaYbheWeGh5BLRkeMUXXz9DZ-GXHK1IgrzqXkR2TAhKhyJovquO-B5gXIz1NyltKCdqQUckAms9UmNjuss4eQWrN2mD1jG4NLmW9iNu2GzVc0q_zOpB7CXXCYTyJiNm-cWYZf04ZmfU5OvFkmvDjUIfmYjN_vp_n89XF2fzvPHQjV5gyo98ZZa2sBWFvjFJQOC8eK0ldW8tqgN3UhHaC1yCRSB1Qoiszx0igYkuv93u7p7y2mVi-abVx3JzXnlQDgUIiOYnvKxSaliF5vYliZ-KMZ1b0u3evSvS590NVlrvaZgIj_fCWhBAXwB3NxZ3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285332345</pqid></control><display><type>article</type><title>Improved Distance Metrics for Histogram-Based Device-Free Localization</title><source>IEEE Electronic Library (IEL)</source><creator>Konings, Daniel ; Alam, Fakhrul ; Noble, Frazer ; Lai, Edmund M-K.</creator><creatorcontrib>Konings, Daniel ; Alam, Fakhrul ; Noble, Frazer ; Lai, Edmund M-K.</creatorcontrib><description>Device-free localization (DFL) systems that rely on the wireless received signal strength indicator (RSSI) metric have been reported in literature for almost a decade. Histogram distance-based DFL (HD-DFL) techniques that operate by constructing RSSI histograms are highly effective as they can localize stationary and moving people in both outdoor and complex indoor environments. A key step in the histogram approaches is the estimation of the difference between the "long-term" and "short-term" histograms. The existing HD-DFL methods use either Kullback-Leibler or the subsequent improvement, kernel distance, to measure this difference. This paper is the first known work to compare an extensive range of histogram distance metrics within a DFL context and demonstrate how a judicious selection of a distance metric can significantly increase the performance of an HD-DFL system. The results from practical implementation in two different environments show that some distance metrics perform considerably better than the kernel distance when used for existing DFL techniques, such as radio tomographic imaging (RTI) and SpringLoc, with the overall median tracking error reducing by up to 25%.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2922772</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Device-free localization ; Error reduction ; histogram distance ; Histograms ; Indoor environments ; indoor positioning systems ; IP networks ; Kernel ; Kernels ; Localization ; Measurement ; radio tomographic imaging ; Sensors ; Signal strength ; spring relaxation ; Springs ; Tracking errors ; Wireless communication</subject><ispartof>IEEE sensors journal, 2019-10, Vol.19 (19), p.8940-8950</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-130ffacbbbd53edbac936ce4c146f8b72daefad47c3ebbe17e0c30590e1c26a93</citedby><cites>FETCH-LOGICAL-c359t-130ffacbbbd53edbac936ce4c146f8b72daefad47c3ebbe17e0c30590e1c26a93</cites><orcidid>0000-0002-2455-3131 ; 0000-0001-9159-3718 ; 0000-0002-0715-9474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8736393$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8736393$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Konings, Daniel</creatorcontrib><creatorcontrib>Alam, Fakhrul</creatorcontrib><creatorcontrib>Noble, Frazer</creatorcontrib><creatorcontrib>Lai, Edmund M-K.</creatorcontrib><title>Improved Distance Metrics for Histogram-Based Device-Free Localization</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Device-free localization (DFL) systems that rely on the wireless received signal strength indicator (RSSI) metric have been reported in literature for almost a decade. Histogram distance-based DFL (HD-DFL) techniques that operate by constructing RSSI histograms are highly effective as they can localize stationary and moving people in both outdoor and complex indoor environments. A key step in the histogram approaches is the estimation of the difference between the "long-term" and "short-term" histograms. The existing HD-DFL methods use either Kullback-Leibler or the subsequent improvement, kernel distance, to measure this difference. This paper is the first known work to compare an extensive range of histogram distance metrics within a DFL context and demonstrate how a judicious selection of a distance metric can significantly increase the performance of an HD-DFL system. The results from practical implementation in two different environments show that some distance metrics perform considerably better than the kernel distance when used for existing DFL techniques, such as radio tomographic imaging (RTI) and SpringLoc, with the overall median tracking error reducing by up to 25%.</description><subject>Device-free localization</subject><subject>Error reduction</subject><subject>histogram distance</subject><subject>Histograms</subject><subject>Indoor environments</subject><subject>indoor positioning systems</subject><subject>IP networks</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Localization</subject><subject>Measurement</subject><subject>radio tomographic imaging</subject><subject>Sensors</subject><subject>Signal strength</subject><subject>spring relaxation</subject><subject>Springs</subject><subject>Tracking errors</subject><subject>Wireless communication</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aZDabzdGP1laqHlTwFpLsRFLabk22Bf317tLiaYbheWeGh5BLRkeMUXXz9DZ-GXHK1IgrzqXkR2TAhKhyJovquO-B5gXIz1NyltKCdqQUckAms9UmNjuss4eQWrN2mD1jG4NLmW9iNu2GzVc0q_zOpB7CXXCYTyJiNm-cWYZf04ZmfU5OvFkmvDjUIfmYjN_vp_n89XF2fzvPHQjV5gyo98ZZa2sBWFvjFJQOC8eK0ldW8tqgN3UhHaC1yCRSB1Qoiszx0igYkuv93u7p7y2mVi-abVx3JzXnlQDgUIiOYnvKxSaliF5vYliZ-KMZ1b0u3evSvS590NVlrvaZgIj_fCWhBAXwB3NxZ3o</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Konings, Daniel</creator><creator>Alam, Fakhrul</creator><creator>Noble, Frazer</creator><creator>Lai, Edmund M-K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2455-3131</orcidid><orcidid>https://orcid.org/0000-0001-9159-3718</orcidid><orcidid>https://orcid.org/0000-0002-0715-9474</orcidid></search><sort><creationdate>20191001</creationdate><title>Improved Distance Metrics for Histogram-Based Device-Free Localization</title><author>Konings, Daniel ; Alam, Fakhrul ; Noble, Frazer ; Lai, Edmund M-K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-130ffacbbbd53edbac936ce4c146f8b72daefad47c3ebbe17e0c30590e1c26a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Device-free localization</topic><topic>Error reduction</topic><topic>histogram distance</topic><topic>Histograms</topic><topic>Indoor environments</topic><topic>indoor positioning systems</topic><topic>IP networks</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Localization</topic><topic>Measurement</topic><topic>radio tomographic imaging</topic><topic>Sensors</topic><topic>Signal strength</topic><topic>spring relaxation</topic><topic>Springs</topic><topic>Tracking errors</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konings, Daniel</creatorcontrib><creatorcontrib>Alam, Fakhrul</creatorcontrib><creatorcontrib>Noble, Frazer</creatorcontrib><creatorcontrib>Lai, Edmund M-K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Konings, Daniel</au><au>Alam, Fakhrul</au><au>Noble, Frazer</au><au>Lai, Edmund M-K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Distance Metrics for Histogram-Based Device-Free Localization</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>19</volume><issue>19</issue><spage>8940</spage><epage>8950</epage><pages>8940-8950</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Device-free localization (DFL) systems that rely on the wireless received signal strength indicator (RSSI) metric have been reported in literature for almost a decade. Histogram distance-based DFL (HD-DFL) techniques that operate by constructing RSSI histograms are highly effective as they can localize stationary and moving people in both outdoor and complex indoor environments. A key step in the histogram approaches is the estimation of the difference between the "long-term" and "short-term" histograms. The existing HD-DFL methods use either Kullback-Leibler or the subsequent improvement, kernel distance, to measure this difference. This paper is the first known work to compare an extensive range of histogram distance metrics within a DFL context and demonstrate how a judicious selection of a distance metric can significantly increase the performance of an HD-DFL system. The results from practical implementation in two different environments show that some distance metrics perform considerably better than the kernel distance when used for existing DFL techniques, such as radio tomographic imaging (RTI) and SpringLoc, with the overall median tracking error reducing by up to 25%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2922772</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2455-3131</orcidid><orcidid>https://orcid.org/0000-0001-9159-3718</orcidid><orcidid>https://orcid.org/0000-0002-0715-9474</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2019-10, Vol.19 (19), p.8940-8950 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2285332345 |
source | IEEE Electronic Library (IEL) |
subjects | Device-free localization Error reduction histogram distance Histograms Indoor environments indoor positioning systems IP networks Kernel Kernels Localization Measurement radio tomographic imaging Sensors Signal strength spring relaxation Springs Tracking errors Wireless communication |
title | Improved Distance Metrics for Histogram-Based Device-Free Localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Distance%20Metrics%20for%20Histogram-Based%20Device-Free%20Localization&rft.jtitle=IEEE%20sensors%20journal&rft.au=Konings,%20Daniel&rft.date=2019-10-01&rft.volume=19&rft.issue=19&rft.spage=8940&rft.epage=8950&rft.pages=8940-8950&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2922772&rft_dat=%3Cproquest_RIE%3E2285332345%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285332345&rft_id=info:pmid/&rft_ieee_id=8736393&rfr_iscdi=true |