Improved Distance Metrics for Histogram-Based Device-Free Localization

Device-free localization (DFL) systems that rely on the wireless received signal strength indicator (RSSI) metric have been reported in literature for almost a decade. Histogram distance-based DFL (HD-DFL) techniques that operate by constructing RSSI histograms are highly effective as they can local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2019-10, Vol.19 (19), p.8940-8950
Hauptverfasser: Konings, Daniel, Alam, Fakhrul, Noble, Frazer, Lai, Edmund M-K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8950
container_issue 19
container_start_page 8940
container_title IEEE sensors journal
container_volume 19
creator Konings, Daniel
Alam, Fakhrul
Noble, Frazer
Lai, Edmund M-K.
description Device-free localization (DFL) systems that rely on the wireless received signal strength indicator (RSSI) metric have been reported in literature for almost a decade. Histogram distance-based DFL (HD-DFL) techniques that operate by constructing RSSI histograms are highly effective as they can localize stationary and moving people in both outdoor and complex indoor environments. A key step in the histogram approaches is the estimation of the difference between the "long-term" and "short-term" histograms. The existing HD-DFL methods use either Kullback-Leibler or the subsequent improvement, kernel distance, to measure this difference. This paper is the first known work to compare an extensive range of histogram distance metrics within a DFL context and demonstrate how a judicious selection of a distance metric can significantly increase the performance of an HD-DFL system. The results from practical implementation in two different environments show that some distance metrics perform considerably better than the kernel distance when used for existing DFL techniques, such as radio tomographic imaging (RTI) and SpringLoc, with the overall median tracking error reducing by up to 25%.
doi_str_mv 10.1109/JSEN.2019.2922772
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2285332345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8736393</ieee_id><sourcerecordid>2285332345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-130ffacbbbd53edbac936ce4c146f8b72daefad47c3ebbe17e0c30590e1c26a93</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aZDabzdGP1laqHlTwFpLsRFLabk22Bf317tLiaYbheWeGh5BLRkeMUXXz9DZ-GXHK1IgrzqXkR2TAhKhyJovquO-B5gXIz1NyltKCdqQUckAms9UmNjuss4eQWrN2mD1jG4NLmW9iNu2GzVc0q_zOpB7CXXCYTyJiNm-cWYZf04ZmfU5OvFkmvDjUIfmYjN_vp_n89XF2fzvPHQjV5gyo98ZZa2sBWFvjFJQOC8eK0ldW8tqgN3UhHaC1yCRSB1Qoiszx0igYkuv93u7p7y2mVi-abVx3JzXnlQDgUIiOYnvKxSaliF5vYliZ-KMZ1b0u3evSvS590NVlrvaZgIj_fCWhBAXwB3NxZ3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285332345</pqid></control><display><type>article</type><title>Improved Distance Metrics for Histogram-Based Device-Free Localization</title><source>IEEE Electronic Library (IEL)</source><creator>Konings, Daniel ; Alam, Fakhrul ; Noble, Frazer ; Lai, Edmund M-K.</creator><creatorcontrib>Konings, Daniel ; Alam, Fakhrul ; Noble, Frazer ; Lai, Edmund M-K.</creatorcontrib><description>Device-free localization (DFL) systems that rely on the wireless received signal strength indicator (RSSI) metric have been reported in literature for almost a decade. Histogram distance-based DFL (HD-DFL) techniques that operate by constructing RSSI histograms are highly effective as they can localize stationary and moving people in both outdoor and complex indoor environments. A key step in the histogram approaches is the estimation of the difference between the "long-term" and "short-term" histograms. The existing HD-DFL methods use either Kullback-Leibler or the subsequent improvement, kernel distance, to measure this difference. This paper is the first known work to compare an extensive range of histogram distance metrics within a DFL context and demonstrate how a judicious selection of a distance metric can significantly increase the performance of an HD-DFL system. The results from practical implementation in two different environments show that some distance metrics perform considerably better than the kernel distance when used for existing DFL techniques, such as radio tomographic imaging (RTI) and SpringLoc, with the overall median tracking error reducing by up to 25%.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2922772</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Device-free localization ; Error reduction ; histogram distance ; Histograms ; Indoor environments ; indoor positioning systems ; IP networks ; Kernel ; Kernels ; Localization ; Measurement ; radio tomographic imaging ; Sensors ; Signal strength ; spring relaxation ; Springs ; Tracking errors ; Wireless communication</subject><ispartof>IEEE sensors journal, 2019-10, Vol.19 (19), p.8940-8950</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-130ffacbbbd53edbac936ce4c146f8b72daefad47c3ebbe17e0c30590e1c26a93</citedby><cites>FETCH-LOGICAL-c359t-130ffacbbbd53edbac936ce4c146f8b72daefad47c3ebbe17e0c30590e1c26a93</cites><orcidid>0000-0002-2455-3131 ; 0000-0001-9159-3718 ; 0000-0002-0715-9474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8736393$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8736393$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Konings, Daniel</creatorcontrib><creatorcontrib>Alam, Fakhrul</creatorcontrib><creatorcontrib>Noble, Frazer</creatorcontrib><creatorcontrib>Lai, Edmund M-K.</creatorcontrib><title>Improved Distance Metrics for Histogram-Based Device-Free Localization</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Device-free localization (DFL) systems that rely on the wireless received signal strength indicator (RSSI) metric have been reported in literature for almost a decade. Histogram distance-based DFL (HD-DFL) techniques that operate by constructing RSSI histograms are highly effective as they can localize stationary and moving people in both outdoor and complex indoor environments. A key step in the histogram approaches is the estimation of the difference between the "long-term" and "short-term" histograms. The existing HD-DFL methods use either Kullback-Leibler or the subsequent improvement, kernel distance, to measure this difference. This paper is the first known work to compare an extensive range of histogram distance metrics within a DFL context and demonstrate how a judicious selection of a distance metric can significantly increase the performance of an HD-DFL system. The results from practical implementation in two different environments show that some distance metrics perform considerably better than the kernel distance when used for existing DFL techniques, such as radio tomographic imaging (RTI) and SpringLoc, with the overall median tracking error reducing by up to 25%.</description><subject>Device-free localization</subject><subject>Error reduction</subject><subject>histogram distance</subject><subject>Histograms</subject><subject>Indoor environments</subject><subject>indoor positioning systems</subject><subject>IP networks</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Localization</subject><subject>Measurement</subject><subject>radio tomographic imaging</subject><subject>Sensors</subject><subject>Signal strength</subject><subject>spring relaxation</subject><subject>Springs</subject><subject>Tracking errors</subject><subject>Wireless communication</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aZDabzdGP1laqHlTwFpLsRFLabk22Bf317tLiaYbheWeGh5BLRkeMUXXz9DZ-GXHK1IgrzqXkR2TAhKhyJovquO-B5gXIz1NyltKCdqQUckAms9UmNjuss4eQWrN2mD1jG4NLmW9iNu2GzVc0q_zOpB7CXXCYTyJiNm-cWYZf04ZmfU5OvFkmvDjUIfmYjN_vp_n89XF2fzvPHQjV5gyo98ZZa2sBWFvjFJQOC8eK0ldW8tqgN3UhHaC1yCRSB1Qoiszx0igYkuv93u7p7y2mVi-abVx3JzXnlQDgUIiOYnvKxSaliF5vYliZ-KMZ1b0u3evSvS590NVlrvaZgIj_fCWhBAXwB3NxZ3o</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Konings, Daniel</creator><creator>Alam, Fakhrul</creator><creator>Noble, Frazer</creator><creator>Lai, Edmund M-K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2455-3131</orcidid><orcidid>https://orcid.org/0000-0001-9159-3718</orcidid><orcidid>https://orcid.org/0000-0002-0715-9474</orcidid></search><sort><creationdate>20191001</creationdate><title>Improved Distance Metrics for Histogram-Based Device-Free Localization</title><author>Konings, Daniel ; Alam, Fakhrul ; Noble, Frazer ; Lai, Edmund M-K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-130ffacbbbd53edbac936ce4c146f8b72daefad47c3ebbe17e0c30590e1c26a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Device-free localization</topic><topic>Error reduction</topic><topic>histogram distance</topic><topic>Histograms</topic><topic>Indoor environments</topic><topic>indoor positioning systems</topic><topic>IP networks</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Localization</topic><topic>Measurement</topic><topic>radio tomographic imaging</topic><topic>Sensors</topic><topic>Signal strength</topic><topic>spring relaxation</topic><topic>Springs</topic><topic>Tracking errors</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konings, Daniel</creatorcontrib><creatorcontrib>Alam, Fakhrul</creatorcontrib><creatorcontrib>Noble, Frazer</creatorcontrib><creatorcontrib>Lai, Edmund M-K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Konings, Daniel</au><au>Alam, Fakhrul</au><au>Noble, Frazer</au><au>Lai, Edmund M-K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Distance Metrics for Histogram-Based Device-Free Localization</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>19</volume><issue>19</issue><spage>8940</spage><epage>8950</epage><pages>8940-8950</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Device-free localization (DFL) systems that rely on the wireless received signal strength indicator (RSSI) metric have been reported in literature for almost a decade. Histogram distance-based DFL (HD-DFL) techniques that operate by constructing RSSI histograms are highly effective as they can localize stationary and moving people in both outdoor and complex indoor environments. A key step in the histogram approaches is the estimation of the difference between the "long-term" and "short-term" histograms. The existing HD-DFL methods use either Kullback-Leibler or the subsequent improvement, kernel distance, to measure this difference. This paper is the first known work to compare an extensive range of histogram distance metrics within a DFL context and demonstrate how a judicious selection of a distance metric can significantly increase the performance of an HD-DFL system. The results from practical implementation in two different environments show that some distance metrics perform considerably better than the kernel distance when used for existing DFL techniques, such as radio tomographic imaging (RTI) and SpringLoc, with the overall median tracking error reducing by up to 25%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2922772</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2455-3131</orcidid><orcidid>https://orcid.org/0000-0001-9159-3718</orcidid><orcidid>https://orcid.org/0000-0002-0715-9474</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2019-10, Vol.19 (19), p.8940-8950
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2285332345
source IEEE Electronic Library (IEL)
subjects Device-free localization
Error reduction
histogram distance
Histograms
Indoor environments
indoor positioning systems
IP networks
Kernel
Kernels
Localization
Measurement
radio tomographic imaging
Sensors
Signal strength
spring relaxation
Springs
Tracking errors
Wireless communication
title Improved Distance Metrics for Histogram-Based Device-Free Localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Distance%20Metrics%20for%20Histogram-Based%20Device-Free%20Localization&rft.jtitle=IEEE%20sensors%20journal&rft.au=Konings,%20Daniel&rft.date=2019-10-01&rft.volume=19&rft.issue=19&rft.spage=8940&rft.epage=8950&rft.pages=8940-8950&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2922772&rft_dat=%3Cproquest_RIE%3E2285332345%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285332345&rft_id=info:pmid/&rft_ieee_id=8736393&rfr_iscdi=true