Runtime Network Routing for Efficient Image Classification
In this paper, we propose a generic Runtime Network Routing (RNR) framework for efficient image classification, which selects an optimal path inside the network. Unlike existing static neural network acceleration methods, our method preserves the full ability of the original large network and conduc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2019-10, Vol.41 (10), p.2291-2304 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2304 |
---|---|
container_issue | 10 |
container_start_page | 2291 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 41 |
creator | Rao, Yongming Lu, Jiwen Lin, Ji Zhou, Jie |
description | In this paper, we propose a generic Runtime Network Routing (RNR) framework for efficient image classification, which selects an optimal path inside the network. Unlike existing static neural network acceleration methods, our method preserves the full ability of the original large network and conducts dynamic routing at runtime according to the input image and current feature maps. The routing is performed in a bottom-up, layer-by-layer manner, where we model it as a Markov decision process and use reinforcement learning for training. The agent determines the estimated reward of each sub-path and conducts routing conditioned on different samples, where a faster path is taken when the image is easier for the task. Since the ability of network is fully preserved, the balance point is easily adjustable according to the available resources. We test our method on both multi-path residual networks and incremental convolutional channel pruning, and show that RNR consistently outperforms static methods at the same computation complexity on both the CIFAR and ImageNet datasets. Our method can also be applied to off-the-shelf neural network structures and easily extended to other application scenarios. |
doi_str_mv | 10.1109/TPAMI.2018.2878258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2285331941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8510920</ieee_id><sourcerecordid>2285331941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-819e9e6f21c57945affa43e6e3474a6211771588c27b6d803d1fbedb9aa4f2b83</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-AQUJePGSurObTXa9lVK1UD8o9bxsktmytUlqNkH896a29uBpYOZ5X4aHkEugQwCq7hZvo-fpkFGQQyYTyYQ8In1QXIVccHVM-hRiFkrJZI-ceb-iFCJB-SnpccoT4EL0yf28LRtXYPCCzVdVfwTzqm1cuQxsVQcTa13msGyCaWGWGIzXxnvX7UzjqvKcnFiz9nixnwPy_jBZjJ_C2evjdDyahRkX0IQSFCqMLYNMJCoSxloTcYyRR0lkYgaQJCCkzFiSxrmkPAebYp4qYyLLUskH5HbXu6mrzxZ9owvnM1yvTYlV6zUDFitKBUQdevMPXVVtXXbfacak4BxUBB3FdlRWV97XaPWmdoWpvzVQvTWrf83qrVm9N9uFrvfVbVpgfoj8qeyAqx3gEPFwlqLrY5T_ALUFezQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285331941</pqid></control><display><type>article</type><title>Runtime Network Routing for Efficient Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Rao, Yongming ; Lu, Jiwen ; Lin, Ji ; Zhou, Jie</creator><creatorcontrib>Rao, Yongming ; Lu, Jiwen ; Lin, Ji ; Zhou, Jie</creatorcontrib><description>In this paper, we propose a generic Runtime Network Routing (RNR) framework for efficient image classification, which selects an optimal path inside the network. Unlike existing static neural network acceleration methods, our method preserves the full ability of the original large network and conducts dynamic routing at runtime according to the input image and current feature maps. The routing is performed in a bottom-up, layer-by-layer manner, where we model it as a Markov decision process and use reinforcement learning for training. The agent determines the estimated reward of each sub-path and conducts routing conditioned on different samples, where a faster path is taken when the image is easier for the task. Since the ability of network is fully preserved, the balance point is easily adjustable according to the available resources. We test our method on both multi-path residual networks and incremental convolutional channel pruning, and show that RNR consistently outperforms static methods at the same computation complexity on both the CIFAR and ImageNet datasets. Our method can also be applied to off-the-shelf neural network structures and easily extended to other application scenarios.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2018.2878258</identifier><identifier>PMID: 30371355</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acceleration ; Computational modeling ; Conditioning ; deep learning ; Deep network compression ; efficient inference model ; Feature maps ; Image classification ; Markov analysis ; Markov chains ; Neural networks ; Pruning ; reinforcement learning ; Routing ; Run time (computers) ; Runtime ; Test procedures ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2019-10, Vol.41 (10), p.2291-2304</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-819e9e6f21c57945affa43e6e3474a6211771588c27b6d803d1fbedb9aa4f2b83</citedby><cites>FETCH-LOGICAL-c351t-819e9e6f21c57945affa43e6e3474a6211771588c27b6d803d1fbedb9aa4f2b83</cites><orcidid>0000-0001-6053-4344 ; 0000-0002-6121-5529 ; 0000-0003-3952-8753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8510920$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8510920$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30371355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rao, Yongming</creatorcontrib><creatorcontrib>Lu, Jiwen</creatorcontrib><creatorcontrib>Lin, Ji</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><title>Runtime Network Routing for Efficient Image Classification</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In this paper, we propose a generic Runtime Network Routing (RNR) framework for efficient image classification, which selects an optimal path inside the network. Unlike existing static neural network acceleration methods, our method preserves the full ability of the original large network and conducts dynamic routing at runtime according to the input image and current feature maps. The routing is performed in a bottom-up, layer-by-layer manner, where we model it as a Markov decision process and use reinforcement learning for training. The agent determines the estimated reward of each sub-path and conducts routing conditioned on different samples, where a faster path is taken when the image is easier for the task. Since the ability of network is fully preserved, the balance point is easily adjustable according to the available resources. We test our method on both multi-path residual networks and incremental convolutional channel pruning, and show that RNR consistently outperforms static methods at the same computation complexity on both the CIFAR and ImageNet datasets. Our method can also be applied to off-the-shelf neural network structures and easily extended to other application scenarios.</description><subject>Acceleration</subject><subject>Computational modeling</subject><subject>Conditioning</subject><subject>deep learning</subject><subject>Deep network compression</subject><subject>efficient inference model</subject><subject>Feature maps</subject><subject>Image classification</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Neural networks</subject><subject>Pruning</subject><subject>reinforcement learning</subject><subject>Routing</subject><subject>Run time (computers)</subject><subject>Runtime</subject><subject>Test procedures</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3-AQUJePGSurObTXa9lVK1UD8o9bxsktmytUlqNkH896a29uBpYOZ5X4aHkEugQwCq7hZvo-fpkFGQQyYTyYQ8In1QXIVccHVM-hRiFkrJZI-ceb-iFCJB-SnpccoT4EL0yf28LRtXYPCCzVdVfwTzqm1cuQxsVQcTa13msGyCaWGWGIzXxnvX7UzjqvKcnFiz9nixnwPy_jBZjJ_C2evjdDyahRkX0IQSFCqMLYNMJCoSxloTcYyRR0lkYgaQJCCkzFiSxrmkPAebYp4qYyLLUskH5HbXu6mrzxZ9owvnM1yvTYlV6zUDFitKBUQdevMPXVVtXXbfacak4BxUBB3FdlRWV97XaPWmdoWpvzVQvTWrf83qrVm9N9uFrvfVbVpgfoj8qeyAqx3gEPFwlqLrY5T_ALUFezQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Rao, Yongming</creator><creator>Lu, Jiwen</creator><creator>Lin, Ji</creator><creator>Zhou, Jie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6053-4344</orcidid><orcidid>https://orcid.org/0000-0002-6121-5529</orcidid><orcidid>https://orcid.org/0000-0003-3952-8753</orcidid></search><sort><creationdate>20191001</creationdate><title>Runtime Network Routing for Efficient Image Classification</title><author>Rao, Yongming ; Lu, Jiwen ; Lin, Ji ; Zhou, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-819e9e6f21c57945affa43e6e3474a6211771588c27b6d803d1fbedb9aa4f2b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Computational modeling</topic><topic>Conditioning</topic><topic>deep learning</topic><topic>Deep network compression</topic><topic>efficient inference model</topic><topic>Feature maps</topic><topic>Image classification</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Neural networks</topic><topic>Pruning</topic><topic>reinforcement learning</topic><topic>Routing</topic><topic>Run time (computers)</topic><topic>Runtime</topic><topic>Test procedures</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Yongming</creatorcontrib><creatorcontrib>Lu, Jiwen</creatorcontrib><creatorcontrib>Lin, Ji</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rao, Yongming</au><au>Lu, Jiwen</au><au>Lin, Ji</au><au>Zhou, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Runtime Network Routing for Efficient Image Classification</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>41</volume><issue>10</issue><spage>2291</spage><epage>2304</epage><pages>2291-2304</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>In this paper, we propose a generic Runtime Network Routing (RNR) framework for efficient image classification, which selects an optimal path inside the network. Unlike existing static neural network acceleration methods, our method preserves the full ability of the original large network and conducts dynamic routing at runtime according to the input image and current feature maps. The routing is performed in a bottom-up, layer-by-layer manner, where we model it as a Markov decision process and use reinforcement learning for training. The agent determines the estimated reward of each sub-path and conducts routing conditioned on different samples, where a faster path is taken when the image is easier for the task. Since the ability of network is fully preserved, the balance point is easily adjustable according to the available resources. We test our method on both multi-path residual networks and incremental convolutional channel pruning, and show that RNR consistently outperforms static methods at the same computation complexity on both the CIFAR and ImageNet datasets. Our method can also be applied to off-the-shelf neural network structures and easily extended to other application scenarios.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30371355</pmid><doi>10.1109/TPAMI.2018.2878258</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6053-4344</orcidid><orcidid>https://orcid.org/0000-0002-6121-5529</orcidid><orcidid>https://orcid.org/0000-0003-3952-8753</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2019-10, Vol.41 (10), p.2291-2304 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_journals_2285331941 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Computational modeling Conditioning deep learning Deep network compression efficient inference model Feature maps Image classification Markov analysis Markov chains Neural networks Pruning reinforcement learning Routing Run time (computers) Runtime Test procedures Training |
title | Runtime Network Routing for Efficient Image Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Runtime%20Network%20Routing%20for%20Efficient%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Rao,%20Yongming&rft.date=2019-10-01&rft.volume=41&rft.issue=10&rft.spage=2291&rft.epage=2304&rft.pages=2291-2304&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2018.2878258&rft_dat=%3Cproquest_RIE%3E2285331941%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285331941&rft_id=info:pmid/30371355&rft_ieee_id=8510920&rfr_iscdi=true |