Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery
This work focuses on the detection of adverse drug reactions (ADRs) in electronic health records (EHRs) written in Spanish. The World Health Organization underlines the importance of reporting ADRs for patients' safety. The fact is that ADRs tend to be under-reported in daily hospital praxis. I...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2019-09, Vol.23 (5), p.2148-2155 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2155 |
---|---|
container_issue | 5 |
container_start_page | 2148 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 23 |
creator | Santiso, Sara Perez, Alicia Casillas, Arantza |
description | This work focuses on the detection of adverse drug reactions (ADRs) in electronic health records (EHRs) written in Spanish. The World Health Organization underlines the importance of reporting ADRs for patients' safety. The fact is that ADRs tend to be under-reported in daily hospital praxis. In this context, automatic solutions based on text mining can help to alleviate the workload of experts. Nevertheless, these solutions pose two challenges: 1) EHRs show high lexical variability, the characterization of the events must be able to deal with unseen words or contexts and 2) ADRs are rare events, hence, the system should be robust against skewed class distribution. To tackle these challenges, deep neural networks seem appropriate because they allow a high-level representation. Specifically, we opted for a joint AB-LSTM network, a sub-class of the bidirectional long short-term memory network. Besides, in an attempt to reinforce lexical variability, we proposed the use of embeddings created using lemmas. We compared this approach with supervised event extraction approaches based on either symbolic or dense representations. Experimental results showed that the joint AB-LSTM approach outperformed previous approaches, achieving an f-measure of 73.3. |
doi_str_mv | 10.1109/JBHI.2018.2879744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2285327806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8523679</ieee_id><sourcerecordid>2285327806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6868fd9001c070ba37a777618edf25fbae77fedde143d06b7081abb9238cdba93</originalsourceid><addsrcrecordid>eNpdkEtr3DAURkVpaEKSHxAKRdBNN57qNXos55UmYUpLHnQpZOs69TC2ppIdkn8fmZlkUW0kdM-99-MgdEHJhFJivt_Mr64njFA9YVoZJcQHdMKo1AVjRH98e1MjjtF5ShuSj85fRn5Cx5wIwqUQJ-j36nm3DbHpHvFNaLoez-bF-u7-J_7T9H_xqi3Be_B4DW3rEq5DxDP_BDEBXsbhEd-Cq_omdHjZpCrkwssZOqrdNsH54T5FD5er-8VVsf7143oxWxcVF6YvpJa69oYQWhFFSseVU0pJqsHXbFqXDpSqx91UcE9kqXJ4V5aGcV350hl-ir7t5-5i-DdA6m2bI8B26zoIQ7KMcsoElVJm9Ot_6CYMscvpLGN6ypnSZKTonqpiSClCbXexaV18sZTY0bgdjdvRuD0Yzz1fDpOHsgX_3vHmNwOf90ADAO9lPWVcKsNfASclgms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285327806</pqid></control><display><type>article</type><title>Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery</title><source>IEEE Electronic Library (IEL)</source><creator>Santiso, Sara ; Perez, Alicia ; Casillas, Arantza</creator><creatorcontrib>Santiso, Sara ; Perez, Alicia ; Casillas, Arantza</creatorcontrib><description>This work focuses on the detection of adverse drug reactions (ADRs) in electronic health records (EHRs) written in Spanish. The World Health Organization underlines the importance of reporting ADRs for patients' safety. The fact is that ADRs tend to be under-reported in daily hospital praxis. In this context, automatic solutions based on text mining can help to alleviate the workload of experts. Nevertheless, these solutions pose two challenges: 1) EHRs show high lexical variability, the characterization of the events must be able to deal with unseen words or contexts and 2) ADRs are rare events, hence, the system should be robust against skewed class distribution. To tackle these challenges, deep neural networks seem appropriate because they allow a high-level representation. Specifically, we opted for a joint AB-LSTM network, a sub-class of the bidirectional long short-term memory network. Besides, in an attempt to reinforce lexical variability, we proposed the use of embeddings created using lemmas. We compared this approach with supervised event extraction approaches based on either symbolic or dense representations. Experimental results showed that the joint AB-LSTM approach outperformed previous approaches, achieving an f-measure of 73.3.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2018.2879744</identifier><identifier>PMID: 30403644</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adverse drug reactions ; Algorithms ; Artificial neural networks ; Data Mining - methods ; Deep Learning ; deep neural networks ; Diseases ; Drug-Related Side Effects and Adverse Reactions - classification ; Drugs ; Electronic Health Records ; Electronic medical records ; Feature extraction ; Humans ; Informatics ; Long short-term memory ; Medical Informatics - methods ; Neural networks ; Representations ; Side effects ; Skewed distributions ; Task analysis ; Text mining ; Variability ; Workload</subject><ispartof>IEEE journal of biomedical and health informatics, 2019-09, Vol.23 (5), p.2148-2155</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6868fd9001c070ba37a777618edf25fbae77fedde143d06b7081abb9238cdba93</citedby><cites>FETCH-LOGICAL-c349t-6868fd9001c070ba37a777618edf25fbae77fedde143d06b7081abb9238cdba93</cites><orcidid>0000-0003-2638-9598 ; 0000-0002-2314-3018 ; 0000-0003-4248-8182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8523679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8523679$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30403644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santiso, Sara</creatorcontrib><creatorcontrib>Perez, Alicia</creatorcontrib><creatorcontrib>Casillas, Arantza</creatorcontrib><title>Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>This work focuses on the detection of adverse drug reactions (ADRs) in electronic health records (EHRs) written in Spanish. The World Health Organization underlines the importance of reporting ADRs for patients' safety. The fact is that ADRs tend to be under-reported in daily hospital praxis. In this context, automatic solutions based on text mining can help to alleviate the workload of experts. Nevertheless, these solutions pose two challenges: 1) EHRs show high lexical variability, the characterization of the events must be able to deal with unseen words or contexts and 2) ADRs are rare events, hence, the system should be robust against skewed class distribution. To tackle these challenges, deep neural networks seem appropriate because they allow a high-level representation. Specifically, we opted for a joint AB-LSTM network, a sub-class of the bidirectional long short-term memory network. Besides, in an attempt to reinforce lexical variability, we proposed the use of embeddings created using lemmas. We compared this approach with supervised event extraction approaches based on either symbolic or dense representations. Experimental results showed that the joint AB-LSTM approach outperformed previous approaches, achieving an f-measure of 73.3.</description><subject>Adverse drug reactions</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Data Mining - methods</subject><subject>Deep Learning</subject><subject>deep neural networks</subject><subject>Diseases</subject><subject>Drug-Related Side Effects and Adverse Reactions - classification</subject><subject>Drugs</subject><subject>Electronic Health Records</subject><subject>Electronic medical records</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Informatics</subject><subject>Long short-term memory</subject><subject>Medical Informatics - methods</subject><subject>Neural networks</subject><subject>Representations</subject><subject>Side effects</subject><subject>Skewed distributions</subject><subject>Task analysis</subject><subject>Text mining</subject><subject>Variability</subject><subject>Workload</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtr3DAURkVpaEKSHxAKRdBNN57qNXos55UmYUpLHnQpZOs69TC2ppIdkn8fmZlkUW0kdM-99-MgdEHJhFJivt_Mr64njFA9YVoZJcQHdMKo1AVjRH98e1MjjtF5ShuSj85fRn5Cx5wIwqUQJ-j36nm3DbHpHvFNaLoez-bF-u7-J_7T9H_xqi3Be_B4DW3rEq5DxDP_BDEBXsbhEd-Cq_omdHjZpCrkwssZOqrdNsH54T5FD5er-8VVsf7143oxWxcVF6YvpJa69oYQWhFFSseVU0pJqsHXbFqXDpSqx91UcE9kqXJ4V5aGcV350hl-ir7t5-5i-DdA6m2bI8B26zoIQ7KMcsoElVJm9Ot_6CYMscvpLGN6ypnSZKTonqpiSClCbXexaV18sZTY0bgdjdvRuD0Yzz1fDpOHsgX_3vHmNwOf90ADAO9lPWVcKsNfASclgms</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Santiso, Sara</creator><creator>Perez, Alicia</creator><creator>Casillas, Arantza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2638-9598</orcidid><orcidid>https://orcid.org/0000-0002-2314-3018</orcidid><orcidid>https://orcid.org/0000-0003-4248-8182</orcidid></search><sort><creationdate>201909</creationdate><title>Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery</title><author>Santiso, Sara ; Perez, Alicia ; Casillas, Arantza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6868fd9001c070ba37a777618edf25fbae77fedde143d06b7081abb9238cdba93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adverse drug reactions</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Data Mining - methods</topic><topic>Deep Learning</topic><topic>deep neural networks</topic><topic>Diseases</topic><topic>Drug-Related Side Effects and Adverse Reactions - classification</topic><topic>Drugs</topic><topic>Electronic Health Records</topic><topic>Electronic medical records</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Informatics</topic><topic>Long short-term memory</topic><topic>Medical Informatics - methods</topic><topic>Neural networks</topic><topic>Representations</topic><topic>Side effects</topic><topic>Skewed distributions</topic><topic>Task analysis</topic><topic>Text mining</topic><topic>Variability</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santiso, Sara</creatorcontrib><creatorcontrib>Perez, Alicia</creatorcontrib><creatorcontrib>Casillas, Arantza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santiso, Sara</au><au>Perez, Alicia</au><au>Casillas, Arantza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2019-09</date><risdate>2019</risdate><volume>23</volume><issue>5</issue><spage>2148</spage><epage>2155</epage><pages>2148-2155</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>This work focuses on the detection of adverse drug reactions (ADRs) in electronic health records (EHRs) written in Spanish. The World Health Organization underlines the importance of reporting ADRs for patients' safety. The fact is that ADRs tend to be under-reported in daily hospital praxis. In this context, automatic solutions based on text mining can help to alleviate the workload of experts. Nevertheless, these solutions pose two challenges: 1) EHRs show high lexical variability, the characterization of the events must be able to deal with unseen words or contexts and 2) ADRs are rare events, hence, the system should be robust against skewed class distribution. To tackle these challenges, deep neural networks seem appropriate because they allow a high-level representation. Specifically, we opted for a joint AB-LSTM network, a sub-class of the bidirectional long short-term memory network. Besides, in an attempt to reinforce lexical variability, we proposed the use of embeddings created using lemmas. We compared this approach with supervised event extraction approaches based on either symbolic or dense representations. Experimental results showed that the joint AB-LSTM approach outperformed previous approaches, achieving an f-measure of 73.3.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30403644</pmid><doi>10.1109/JBHI.2018.2879744</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2638-9598</orcidid><orcidid>https://orcid.org/0000-0002-2314-3018</orcidid><orcidid>https://orcid.org/0000-0003-4248-8182</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2019-09, Vol.23 (5), p.2148-2155 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_journals_2285327806 |
source | IEEE Electronic Library (IEL) |
subjects | Adverse drug reactions Algorithms Artificial neural networks Data Mining - methods Deep Learning deep neural networks Diseases Drug-Related Side Effects and Adverse Reactions - classification Drugs Electronic Health Records Electronic medical records Feature extraction Humans Informatics Long short-term memory Medical Informatics - methods Neural networks Representations Side effects Skewed distributions Task analysis Text mining Variability Workload |
title | Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A05%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Joint%20AB-LSTM%20With%20Embedded%20Lemmas%20for%20Adverse%20Drug%20Reaction%20Discovery&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Santiso,%20Sara&rft.date=2019-09&rft.volume=23&rft.issue=5&rft.spage=2148&rft.epage=2155&rft.pages=2148-2155&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2018.2879744&rft_dat=%3Cproquest_RIE%3E2285327806%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285327806&rft_id=info:pmid/30403644&rft_ieee_id=8523679&rfr_iscdi=true |