Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery

This work focuses on the detection of adverse drug reactions (ADRs) in electronic health records (EHRs) written in Spanish. The World Health Organization underlines the importance of reporting ADRs for patients' safety. The fact is that ADRs tend to be under-reported in daily hospital praxis. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2019-09, Vol.23 (5), p.2148-2155
Hauptverfasser: Santiso, Sara, Perez, Alicia, Casillas, Arantza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2155
container_issue 5
container_start_page 2148
container_title IEEE journal of biomedical and health informatics
container_volume 23
creator Santiso, Sara
Perez, Alicia
Casillas, Arantza
description This work focuses on the detection of adverse drug reactions (ADRs) in electronic health records (EHRs) written in Spanish. The World Health Organization underlines the importance of reporting ADRs for patients' safety. The fact is that ADRs tend to be under-reported in daily hospital praxis. In this context, automatic solutions based on text mining can help to alleviate the workload of experts. Nevertheless, these solutions pose two challenges: 1) EHRs show high lexical variability, the characterization of the events must be able to deal with unseen words or contexts and 2) ADRs are rare events, hence, the system should be robust against skewed class distribution. To tackle these challenges, deep neural networks seem appropriate because they allow a high-level representation. Specifically, we opted for a joint AB-LSTM network, a sub-class of the bidirectional long short-term memory network. Besides, in an attempt to reinforce lexical variability, we proposed the use of embeddings created using lemmas. We compared this approach with supervised event extraction approaches based on either symbolic or dense representations. Experimental results showed that the joint AB-LSTM approach outperformed previous approaches, achieving an f-measure of 73.3.
doi_str_mv 10.1109/JBHI.2018.2879744
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2285327806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8523679</ieee_id><sourcerecordid>2285327806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6868fd9001c070ba37a777618edf25fbae77fedde143d06b7081abb9238cdba93</originalsourceid><addsrcrecordid>eNpdkEtr3DAURkVpaEKSHxAKRdBNN57qNXos55UmYUpLHnQpZOs69TC2ppIdkn8fmZlkUW0kdM-99-MgdEHJhFJivt_Mr64njFA9YVoZJcQHdMKo1AVjRH98e1MjjtF5ShuSj85fRn5Cx5wIwqUQJ-j36nm3DbHpHvFNaLoez-bF-u7-J_7T9H_xqi3Be_B4DW3rEq5DxDP_BDEBXsbhEd-Cq_omdHjZpCrkwssZOqrdNsH54T5FD5er-8VVsf7143oxWxcVF6YvpJa69oYQWhFFSseVU0pJqsHXbFqXDpSqx91UcE9kqXJ4V5aGcV350hl-ir7t5-5i-DdA6m2bI8B26zoIQ7KMcsoElVJm9Ot_6CYMscvpLGN6ypnSZKTonqpiSClCbXexaV18sZTY0bgdjdvRuD0Yzz1fDpOHsgX_3vHmNwOf90ADAO9lPWVcKsNfASclgms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285327806</pqid></control><display><type>article</type><title>Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery</title><source>IEEE Electronic Library (IEL)</source><creator>Santiso, Sara ; Perez, Alicia ; Casillas, Arantza</creator><creatorcontrib>Santiso, Sara ; Perez, Alicia ; Casillas, Arantza</creatorcontrib><description>This work focuses on the detection of adverse drug reactions (ADRs) in electronic health records (EHRs) written in Spanish. The World Health Organization underlines the importance of reporting ADRs for patients' safety. The fact is that ADRs tend to be under-reported in daily hospital praxis. In this context, automatic solutions based on text mining can help to alleviate the workload of experts. Nevertheless, these solutions pose two challenges: 1) EHRs show high lexical variability, the characterization of the events must be able to deal with unseen words or contexts and 2) ADRs are rare events, hence, the system should be robust against skewed class distribution. To tackle these challenges, deep neural networks seem appropriate because they allow a high-level representation. Specifically, we opted for a joint AB-LSTM network, a sub-class of the bidirectional long short-term memory network. Besides, in an attempt to reinforce lexical variability, we proposed the use of embeddings created using lemmas. We compared this approach with supervised event extraction approaches based on either symbolic or dense representations. Experimental results showed that the joint AB-LSTM approach outperformed previous approaches, achieving an f-measure of 73.3.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2018.2879744</identifier><identifier>PMID: 30403644</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adverse drug reactions ; Algorithms ; Artificial neural networks ; Data Mining - methods ; Deep Learning ; deep neural networks ; Diseases ; Drug-Related Side Effects and Adverse Reactions - classification ; Drugs ; Electronic Health Records ; Electronic medical records ; Feature extraction ; Humans ; Informatics ; Long short-term memory ; Medical Informatics - methods ; Neural networks ; Representations ; Side effects ; Skewed distributions ; Task analysis ; Text mining ; Variability ; Workload</subject><ispartof>IEEE journal of biomedical and health informatics, 2019-09, Vol.23 (5), p.2148-2155</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6868fd9001c070ba37a777618edf25fbae77fedde143d06b7081abb9238cdba93</citedby><cites>FETCH-LOGICAL-c349t-6868fd9001c070ba37a777618edf25fbae77fedde143d06b7081abb9238cdba93</cites><orcidid>0000-0003-2638-9598 ; 0000-0002-2314-3018 ; 0000-0003-4248-8182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8523679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8523679$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30403644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santiso, Sara</creatorcontrib><creatorcontrib>Perez, Alicia</creatorcontrib><creatorcontrib>Casillas, Arantza</creatorcontrib><title>Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>This work focuses on the detection of adverse drug reactions (ADRs) in electronic health records (EHRs) written in Spanish. The World Health Organization underlines the importance of reporting ADRs for patients' safety. The fact is that ADRs tend to be under-reported in daily hospital praxis. In this context, automatic solutions based on text mining can help to alleviate the workload of experts. Nevertheless, these solutions pose two challenges: 1) EHRs show high lexical variability, the characterization of the events must be able to deal with unseen words or contexts and 2) ADRs are rare events, hence, the system should be robust against skewed class distribution. To tackle these challenges, deep neural networks seem appropriate because they allow a high-level representation. Specifically, we opted for a joint AB-LSTM network, a sub-class of the bidirectional long short-term memory network. Besides, in an attempt to reinforce lexical variability, we proposed the use of embeddings created using lemmas. We compared this approach with supervised event extraction approaches based on either symbolic or dense representations. Experimental results showed that the joint AB-LSTM approach outperformed previous approaches, achieving an f-measure of 73.3.</description><subject>Adverse drug reactions</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Data Mining - methods</subject><subject>Deep Learning</subject><subject>deep neural networks</subject><subject>Diseases</subject><subject>Drug-Related Side Effects and Adverse Reactions - classification</subject><subject>Drugs</subject><subject>Electronic Health Records</subject><subject>Electronic medical records</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Informatics</subject><subject>Long short-term memory</subject><subject>Medical Informatics - methods</subject><subject>Neural networks</subject><subject>Representations</subject><subject>Side effects</subject><subject>Skewed distributions</subject><subject>Task analysis</subject><subject>Text mining</subject><subject>Variability</subject><subject>Workload</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtr3DAURkVpaEKSHxAKRdBNN57qNXos55UmYUpLHnQpZOs69TC2ppIdkn8fmZlkUW0kdM-99-MgdEHJhFJivt_Mr64njFA9YVoZJcQHdMKo1AVjRH98e1MjjtF5ShuSj85fRn5Cx5wIwqUQJ-j36nm3DbHpHvFNaLoez-bF-u7-J_7T9H_xqi3Be_B4DW3rEq5DxDP_BDEBXsbhEd-Cq_omdHjZpCrkwssZOqrdNsH54T5FD5er-8VVsf7143oxWxcVF6YvpJa69oYQWhFFSseVU0pJqsHXbFqXDpSqx91UcE9kqXJ4V5aGcV350hl-ir7t5-5i-DdA6m2bI8B26zoIQ7KMcsoElVJm9Ot_6CYMscvpLGN6ypnSZKTonqpiSClCbXexaV18sZTY0bgdjdvRuD0Yzz1fDpOHsgX_3vHmNwOf90ADAO9lPWVcKsNfASclgms</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Santiso, Sara</creator><creator>Perez, Alicia</creator><creator>Casillas, Arantza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2638-9598</orcidid><orcidid>https://orcid.org/0000-0002-2314-3018</orcidid><orcidid>https://orcid.org/0000-0003-4248-8182</orcidid></search><sort><creationdate>201909</creationdate><title>Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery</title><author>Santiso, Sara ; Perez, Alicia ; Casillas, Arantza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6868fd9001c070ba37a777618edf25fbae77fedde143d06b7081abb9238cdba93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adverse drug reactions</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Data Mining - methods</topic><topic>Deep Learning</topic><topic>deep neural networks</topic><topic>Diseases</topic><topic>Drug-Related Side Effects and Adverse Reactions - classification</topic><topic>Drugs</topic><topic>Electronic Health Records</topic><topic>Electronic medical records</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Informatics</topic><topic>Long short-term memory</topic><topic>Medical Informatics - methods</topic><topic>Neural networks</topic><topic>Representations</topic><topic>Side effects</topic><topic>Skewed distributions</topic><topic>Task analysis</topic><topic>Text mining</topic><topic>Variability</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santiso, Sara</creatorcontrib><creatorcontrib>Perez, Alicia</creatorcontrib><creatorcontrib>Casillas, Arantza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santiso, Sara</au><au>Perez, Alicia</au><au>Casillas, Arantza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2019-09</date><risdate>2019</risdate><volume>23</volume><issue>5</issue><spage>2148</spage><epage>2155</epage><pages>2148-2155</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>This work focuses on the detection of adverse drug reactions (ADRs) in electronic health records (EHRs) written in Spanish. The World Health Organization underlines the importance of reporting ADRs for patients' safety. The fact is that ADRs tend to be under-reported in daily hospital praxis. In this context, automatic solutions based on text mining can help to alleviate the workload of experts. Nevertheless, these solutions pose two challenges: 1) EHRs show high lexical variability, the characterization of the events must be able to deal with unseen words or contexts and 2) ADRs are rare events, hence, the system should be robust against skewed class distribution. To tackle these challenges, deep neural networks seem appropriate because they allow a high-level representation. Specifically, we opted for a joint AB-LSTM network, a sub-class of the bidirectional long short-term memory network. Besides, in an attempt to reinforce lexical variability, we proposed the use of embeddings created using lemmas. We compared this approach with supervised event extraction approaches based on either symbolic or dense representations. Experimental results showed that the joint AB-LSTM approach outperformed previous approaches, achieving an f-measure of 73.3.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30403644</pmid><doi>10.1109/JBHI.2018.2879744</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2638-9598</orcidid><orcidid>https://orcid.org/0000-0002-2314-3018</orcidid><orcidid>https://orcid.org/0000-0003-4248-8182</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2019-09, Vol.23 (5), p.2148-2155
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_journals_2285327806
source IEEE Electronic Library (IEL)
subjects Adverse drug reactions
Algorithms
Artificial neural networks
Data Mining - methods
Deep Learning
deep neural networks
Diseases
Drug-Related Side Effects and Adverse Reactions - classification
Drugs
Electronic Health Records
Electronic medical records
Feature extraction
Humans
Informatics
Long short-term memory
Medical Informatics - methods
Neural networks
Representations
Side effects
Skewed distributions
Task analysis
Text mining
Variability
Workload
title Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A05%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Joint%20AB-LSTM%20With%20Embedded%20Lemmas%20for%20Adverse%20Drug%20Reaction%20Discovery&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Santiso,%20Sara&rft.date=2019-09&rft.volume=23&rft.issue=5&rft.spage=2148&rft.epage=2155&rft.pages=2148-2155&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2018.2879744&rft_dat=%3Cproquest_RIE%3E2285327806%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285327806&rft_id=info:pmid/30403644&rft_ieee_id=8523679&rfr_iscdi=true