Reduced Graphene Oxide-Supported Nickel(II)-Bis(1,10-Phenanthroline) Complex as a Highly Active Electrocatalyst for Ethanol Oxidation Reaction

The reduced graphene oxide (rGO) is used to support nickel(II)-bis(1,10-phenanthroline) complex (Ni(II)(Phen) 2 ), forming a catalyst Ni(II)(Phen) 2 /rGO for ethanol oxidation reaction (EOR). A pyrolytic graphite electrode modified by this catalyst shows excellent electrocatalytic EOR activity, char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrocatalysis 2019-09, Vol.10 (5), p.560-572
Hauptverfasser: Santos, José R. N., Viégas, Deracilde S. S., Alves, Ismael Carlos B., Rabelo, Alex D., Costa, Wendell M., Marques, Edmar P., Zhang, Lei, Zhang, Jiujun, Marques, Aldaléa L. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 572
container_issue 5
container_start_page 560
container_title Electrocatalysis
container_volume 10
creator Santos, José R. N.
Viégas, Deracilde S. S.
Alves, Ismael Carlos B.
Rabelo, Alex D.
Costa, Wendell M.
Marques, Edmar P.
Zhang, Lei
Zhang, Jiujun
Marques, Aldaléa L. B.
description The reduced graphene oxide (rGO) is used to support nickel(II)-bis(1,10-phenanthroline) complex (Ni(II)(Phen) 2 ), forming a catalyst Ni(II)(Phen) 2 /rGO for ethanol oxidation reaction (EOR). A pyrolytic graphite electrode modified by this catalyst shows excellent electrocatalytic EOR activity, characterized by physical and electrochemical methods. The electrocatalytic activity of the material was evaluated by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy (EIS). The significant increase in EOR currents compared to the electrode modified with only (Ni(II)(Phen) 2 complex demonstrates the promotion role of the rGO. It is believed that the interaction between Ni(II)(Phen) 2 and rGO to create a synergistic effect of Ni(II)(Phen) 2 /rGO catalyst should be responsible for the observed enhancement of the catalytic EOR performance. Using the Laviron theory, the charge transfer rate constant ( k s ) and the electron transfer coefficient ( α ) of the electrode reaction are calculated to be 0.60 s −1 and 0.61, respectively. Both the effects of OH − and ethanol concentration on the catalyst EOR activity are also studied to obtain the diffusion coefficient of ethanol ( D  = 4.7 × 10 −6  cm 2  s −1 ) and the catalytic rate constant ( k cat  = 1.26 × 10 7  cm 3  mol −1  s −1 ). Based on the experimental results, an EOR mechanism catalyzed by Ni(II)(Phen) 2 /rGO is proposed. The catalytic EOR peak currents exhibit a linear growth (behavior) with increasing ethanol concentration, suggesting the possible use of this catalyst material as a sensor for ethanol analysis. In addition, the obtained chronoamperometric curves confirm the stability of the catalyst. It is believed that this Ni(II)(Phen) 2 /rGO catalyst is a promising cost-effective alternative for ethanol oxidation reaction in direct ethanol fuel cells. Graphical Abstract Electrocatalytical oxidation of ethanol catalyzed by a rGO-supported Ni(II)(Phen) 2 catalyst-modified pyrolytic graphite electrode
doi_str_mv 10.1007/s12678-019-00539-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2285230245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2285230245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-375d0fd2c84c7a2963d1510d6b0bac97943bc350744a1819ac2d1d4751ed696f3</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhRdRsGhfwKuANy0Yzc9md3OppdqCWPHnOqRJtrt1u1mTVOxL-MxGt-CdczEzMN85AydJzjC6xAjlVx6TLC8gwhwixGjsB8kAF1kBGefp4X4njPDjZOj9GsWinKKCDZKvJ6O3ymhw52RXmdaAxWetDXzedp11IR4eavVmmtF8PoY3tR_hC4zgYyRlGypnm7o1YzCxm64xn0B6IMGsXlXNDlyrUH8YMG2MCs4qGWSz8wGU1oFpqGRrm99XMtS2BU9Gqp_lNDkqZePNcD9Pktfb6ctkBu8Xd_PJ9T1UlGUB0pxpVGqiilTlkvCMasww0tkSLaXiOU_pMpIoT1OJC8ylIhrrNGfY6IxnJT1Jznvfztn3rfFBrO3WtfGlIKRghCKSskiRnlLOeu9MKTpXb6TbCYzET_Sij17E6MVv9AJFEe1FPsLtyrg_639U3wEShnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285230245</pqid></control><display><type>article</type><title>Reduced Graphene Oxide-Supported Nickel(II)-Bis(1,10-Phenanthroline) Complex as a Highly Active Electrocatalyst for Ethanol Oxidation Reaction</title><source>Springer Nature - Complete Springer Journals</source><creator>Santos, José R. N. ; Viégas, Deracilde S. S. ; Alves, Ismael Carlos B. ; Rabelo, Alex D. ; Costa, Wendell M. ; Marques, Edmar P. ; Zhang, Lei ; Zhang, Jiujun ; Marques, Aldaléa L. B.</creator><creatorcontrib>Santos, José R. N. ; Viégas, Deracilde S. S. ; Alves, Ismael Carlos B. ; Rabelo, Alex D. ; Costa, Wendell M. ; Marques, Edmar P. ; Zhang, Lei ; Zhang, Jiujun ; Marques, Aldaléa L. B.</creatorcontrib><description>The reduced graphene oxide (rGO) is used to support nickel(II)-bis(1,10-phenanthroline) complex (Ni(II)(Phen) 2 ), forming a catalyst Ni(II)(Phen) 2 /rGO for ethanol oxidation reaction (EOR). A pyrolytic graphite electrode modified by this catalyst shows excellent electrocatalytic EOR activity, characterized by physical and electrochemical methods. The electrocatalytic activity of the material was evaluated by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy (EIS). The significant increase in EOR currents compared to the electrode modified with only (Ni(II)(Phen) 2 complex demonstrates the promotion role of the rGO. It is believed that the interaction between Ni(II)(Phen) 2 and rGO to create a synergistic effect of Ni(II)(Phen) 2 /rGO catalyst should be responsible for the observed enhancement of the catalytic EOR performance. Using the Laviron theory, the charge transfer rate constant ( k s ) and the electron transfer coefficient ( α ) of the electrode reaction are calculated to be 0.60 s −1 and 0.61, respectively. Both the effects of OH − and ethanol concentration on the catalyst EOR activity are also studied to obtain the diffusion coefficient of ethanol ( D  = 4.7 × 10 −6  cm 2  s −1 ) and the catalytic rate constant ( k cat  = 1.26 × 10 7  cm 3  mol −1  s −1 ). Based on the experimental results, an EOR mechanism catalyzed by Ni(II)(Phen) 2 /rGO is proposed. The catalytic EOR peak currents exhibit a linear growth (behavior) with increasing ethanol concentration, suggesting the possible use of this catalyst material as a sensor for ethanol analysis. In addition, the obtained chronoamperometric curves confirm the stability of the catalyst. It is believed that this Ni(II)(Phen) 2 /rGO catalyst is a promising cost-effective alternative for ethanol oxidation reaction in direct ethanol fuel cells. Graphical Abstract Electrocatalytical oxidation of ethanol catalyzed by a rGO-supported Ni(II)(Phen) 2 catalyst-modified pyrolytic graphite electrode</description><identifier>ISSN: 1868-2529</identifier><identifier>EISSN: 1868-5994</identifier><identifier>DOI: 10.1007/s12678-019-00539-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Catalysis ; Catalysts ; Charge transfer ; Chemistry ; Chemistry and Materials Science ; Diffusion coefficient ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; Electron transfer ; Energy Systems ; Ethanol ; Fuel cells ; Graphene ; Nickel ; Original Research ; Oxidation ; Physical Chemistry ; Pyrolytic graphite ; Stability analysis ; Synergistic effect</subject><ispartof>Electrocatalysis, 2019-09, Vol.10 (5), p.560-572</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-375d0fd2c84c7a2963d1510d6b0bac97943bc350744a1819ac2d1d4751ed696f3</citedby><cites>FETCH-LOGICAL-c356t-375d0fd2c84c7a2963d1510d6b0bac97943bc350744a1819ac2d1d4751ed696f3</cites><orcidid>0000-0002-5685-7869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12678-019-00539-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12678-019-00539-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Santos, José R. N.</creatorcontrib><creatorcontrib>Viégas, Deracilde S. S.</creatorcontrib><creatorcontrib>Alves, Ismael Carlos B.</creatorcontrib><creatorcontrib>Rabelo, Alex D.</creatorcontrib><creatorcontrib>Costa, Wendell M.</creatorcontrib><creatorcontrib>Marques, Edmar P.</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhang, Jiujun</creatorcontrib><creatorcontrib>Marques, Aldaléa L. B.</creatorcontrib><title>Reduced Graphene Oxide-Supported Nickel(II)-Bis(1,10-Phenanthroline) Complex as a Highly Active Electrocatalyst for Ethanol Oxidation Reaction</title><title>Electrocatalysis</title><addtitle>Electrocatalysis</addtitle><description>The reduced graphene oxide (rGO) is used to support nickel(II)-bis(1,10-phenanthroline) complex (Ni(II)(Phen) 2 ), forming a catalyst Ni(II)(Phen) 2 /rGO for ethanol oxidation reaction (EOR). A pyrolytic graphite electrode modified by this catalyst shows excellent electrocatalytic EOR activity, characterized by physical and electrochemical methods. The electrocatalytic activity of the material was evaluated by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy (EIS). The significant increase in EOR currents compared to the electrode modified with only (Ni(II)(Phen) 2 complex demonstrates the promotion role of the rGO. It is believed that the interaction between Ni(II)(Phen) 2 and rGO to create a synergistic effect of Ni(II)(Phen) 2 /rGO catalyst should be responsible for the observed enhancement of the catalytic EOR performance. Using the Laviron theory, the charge transfer rate constant ( k s ) and the electron transfer coefficient ( α ) of the electrode reaction are calculated to be 0.60 s −1 and 0.61, respectively. Both the effects of OH − and ethanol concentration on the catalyst EOR activity are also studied to obtain the diffusion coefficient of ethanol ( D  = 4.7 × 10 −6  cm 2  s −1 ) and the catalytic rate constant ( k cat  = 1.26 × 10 7  cm 3  mol −1  s −1 ). Based on the experimental results, an EOR mechanism catalyzed by Ni(II)(Phen) 2 /rGO is proposed. The catalytic EOR peak currents exhibit a linear growth (behavior) with increasing ethanol concentration, suggesting the possible use of this catalyst material as a sensor for ethanol analysis. In addition, the obtained chronoamperometric curves confirm the stability of the catalyst. It is believed that this Ni(II)(Phen) 2 /rGO catalyst is a promising cost-effective alternative for ethanol oxidation reaction in direct ethanol fuel cells. Graphical Abstract Electrocatalytical oxidation of ethanol catalyzed by a rGO-supported Ni(II)(Phen) 2 catalyst-modified pyrolytic graphite electrode</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion coefficient</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Energy Systems</subject><subject>Ethanol</subject><subject>Fuel cells</subject><subject>Graphene</subject><subject>Nickel</subject><subject>Original Research</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Pyrolytic graphite</subject><subject>Stability analysis</subject><subject>Synergistic effect</subject><issn>1868-2529</issn><issn>1868-5994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhRdRsGhfwKuANy0Yzc9md3OppdqCWPHnOqRJtrt1u1mTVOxL-MxGt-CdczEzMN85AydJzjC6xAjlVx6TLC8gwhwixGjsB8kAF1kBGefp4X4njPDjZOj9GsWinKKCDZKvJ6O3ymhw52RXmdaAxWetDXzedp11IR4eavVmmtF8PoY3tR_hC4zgYyRlGypnm7o1YzCxm64xn0B6IMGsXlXNDlyrUH8YMG2MCs4qGWSz8wGU1oFpqGRrm99XMtS2BU9Gqp_lNDkqZePNcD9Pktfb6ctkBu8Xd_PJ9T1UlGUB0pxpVGqiilTlkvCMasww0tkSLaXiOU_pMpIoT1OJC8ylIhrrNGfY6IxnJT1Jznvfztn3rfFBrO3WtfGlIKRghCKSskiRnlLOeu9MKTpXb6TbCYzET_Sij17E6MVv9AJFEe1FPsLtyrg_639U3wEShnA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Santos, José R. N.</creator><creator>Viégas, Deracilde S. S.</creator><creator>Alves, Ismael Carlos B.</creator><creator>Rabelo, Alex D.</creator><creator>Costa, Wendell M.</creator><creator>Marques, Edmar P.</creator><creator>Zhang, Lei</creator><creator>Zhang, Jiujun</creator><creator>Marques, Aldaléa L. B.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5685-7869</orcidid></search><sort><creationdate>20190901</creationdate><title>Reduced Graphene Oxide-Supported Nickel(II)-Bis(1,10-Phenanthroline) Complex as a Highly Active Electrocatalyst for Ethanol Oxidation Reaction</title><author>Santos, José R. N. ; Viégas, Deracilde S. S. ; Alves, Ismael Carlos B. ; Rabelo, Alex D. ; Costa, Wendell M. ; Marques, Edmar P. ; Zhang, Lei ; Zhang, Jiujun ; Marques, Aldaléa L. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-375d0fd2c84c7a2963d1510d6b0bac97943bc350744a1819ac2d1d4751ed696f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion coefficient</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Energy Systems</topic><topic>Ethanol</topic><topic>Fuel cells</topic><topic>Graphene</topic><topic>Nickel</topic><topic>Original Research</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Pyrolytic graphite</topic><topic>Stability analysis</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, José R. N.</creatorcontrib><creatorcontrib>Viégas, Deracilde S. S.</creatorcontrib><creatorcontrib>Alves, Ismael Carlos B.</creatorcontrib><creatorcontrib>Rabelo, Alex D.</creatorcontrib><creatorcontrib>Costa, Wendell M.</creatorcontrib><creatorcontrib>Marques, Edmar P.</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhang, Jiujun</creatorcontrib><creatorcontrib>Marques, Aldaléa L. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Electrocatalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, José R. N.</au><au>Viégas, Deracilde S. S.</au><au>Alves, Ismael Carlos B.</au><au>Rabelo, Alex D.</au><au>Costa, Wendell M.</au><au>Marques, Edmar P.</au><au>Zhang, Lei</au><au>Zhang, Jiujun</au><au>Marques, Aldaléa L. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced Graphene Oxide-Supported Nickel(II)-Bis(1,10-Phenanthroline) Complex as a Highly Active Electrocatalyst for Ethanol Oxidation Reaction</atitle><jtitle>Electrocatalysis</jtitle><stitle>Electrocatalysis</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>10</volume><issue>5</issue><spage>560</spage><epage>572</epage><pages>560-572</pages><issn>1868-2529</issn><eissn>1868-5994</eissn><abstract>The reduced graphene oxide (rGO) is used to support nickel(II)-bis(1,10-phenanthroline) complex (Ni(II)(Phen) 2 ), forming a catalyst Ni(II)(Phen) 2 /rGO for ethanol oxidation reaction (EOR). A pyrolytic graphite electrode modified by this catalyst shows excellent electrocatalytic EOR activity, characterized by physical and electrochemical methods. The electrocatalytic activity of the material was evaluated by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy (EIS). The significant increase in EOR currents compared to the electrode modified with only (Ni(II)(Phen) 2 complex demonstrates the promotion role of the rGO. It is believed that the interaction between Ni(II)(Phen) 2 and rGO to create a synergistic effect of Ni(II)(Phen) 2 /rGO catalyst should be responsible for the observed enhancement of the catalytic EOR performance. Using the Laviron theory, the charge transfer rate constant ( k s ) and the electron transfer coefficient ( α ) of the electrode reaction are calculated to be 0.60 s −1 and 0.61, respectively. Both the effects of OH − and ethanol concentration on the catalyst EOR activity are also studied to obtain the diffusion coefficient of ethanol ( D  = 4.7 × 10 −6  cm 2  s −1 ) and the catalytic rate constant ( k cat  = 1.26 × 10 7  cm 3  mol −1  s −1 ). Based on the experimental results, an EOR mechanism catalyzed by Ni(II)(Phen) 2 /rGO is proposed. The catalytic EOR peak currents exhibit a linear growth (behavior) with increasing ethanol concentration, suggesting the possible use of this catalyst material as a sensor for ethanol analysis. In addition, the obtained chronoamperometric curves confirm the stability of the catalyst. It is believed that this Ni(II)(Phen) 2 /rGO catalyst is a promising cost-effective alternative for ethanol oxidation reaction in direct ethanol fuel cells. Graphical Abstract Electrocatalytical oxidation of ethanol catalyzed by a rGO-supported Ni(II)(Phen) 2 catalyst-modified pyrolytic graphite electrode</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12678-019-00539-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5685-7869</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-2529
ispartof Electrocatalysis, 2019-09, Vol.10 (5), p.560-572
issn 1868-2529
1868-5994
language eng
recordid cdi_proquest_journals_2285230245
source Springer Nature - Complete Springer Journals
subjects Catalysis
Catalysts
Charge transfer
Chemistry
Chemistry and Materials Science
Diffusion coefficient
Electrochemical impedance spectroscopy
Electrochemistry
Electrodes
Electron transfer
Energy Systems
Ethanol
Fuel cells
Graphene
Nickel
Original Research
Oxidation
Physical Chemistry
Pyrolytic graphite
Stability analysis
Synergistic effect
title Reduced Graphene Oxide-Supported Nickel(II)-Bis(1,10-Phenanthroline) Complex as a Highly Active Electrocatalyst for Ethanol Oxidation Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20Graphene%20Oxide-Supported%20Nickel(II)-Bis(1,10-Phenanthroline)%20Complex%20as%20a%20Highly%20Active%20Electrocatalyst%20for%20Ethanol%20Oxidation%20Reaction&rft.jtitle=Electrocatalysis&rft.au=Santos,%20Jos%C3%A9%20R.%20N.&rft.date=2019-09-01&rft.volume=10&rft.issue=5&rft.spage=560&rft.epage=572&rft.pages=560-572&rft.issn=1868-2529&rft.eissn=1868-5994&rft_id=info:doi/10.1007/s12678-019-00539-0&rft_dat=%3Cproquest_cross%3E2285230245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285230245&rft_id=info:pmid/&rfr_iscdi=true