Recent Progress of Polysaccharide‐Based Hydrogel Interfaces for Wound Healing and Tissue Engineering
Polysaccharide is an abundant and reproducible natural material that is biocompatible and biodegradable. Polysaccharide and its derivatives also possess distinctive properties such as hydrophilicity, mechanical stability, as well as tunable functionality. Polysaccharide‐based hydrogels can be constr...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2019-09, Vol.6 (17), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polysaccharide is an abundant and reproducible natural material that is biocompatible and biodegradable. Polysaccharide and its derivatives also possess distinctive properties such as hydrophilicity, mechanical stability, as well as tunable functionality. Polysaccharide‐based hydrogels can be constructed via the physical and/or chemical crosslinking of polysaccharide derivatives with different functional molecules, as porous network structures or nanofibrillar structures. This review discusses the biomedical applications of polysaccharide‐based hydrogels containing native polysaccharides, polysaccharide derivatives, and polysaccharide‐composite hydrogels. Recent works on the fabrication, physical properties, advanced engineering, biomedical applications of cellulose‐, chitosan‐, alginate‐, and starch‐based hydrogels are also elaborated. Such porous swelling scaffolds exhibit great advantages at the interface of a negative pressure system such as wound dressing. In addition, the authors also discuss and summarize the exemplary research works of these hydrogels in the applications of drug release, wound dressing, and tissue engineering. Finally, challenges and future perspectives about the development of polysaccharide‐based hydrogels are discussed.
Polysaccharide‐based hydrogels can prevent drug degradation, keep the wound moist, allow exchange of gases between wound and outside, and express structural similarity to the native extracellular matrix. The unique points of this review provide a theoretical basis for the future transplantation of hydrogels in vivo or in vitro. This review also provides technical direction for biomedical applications. |
---|---|
ISSN: | 2196-7350 2196-7350 |
DOI: | 10.1002/admi.201900761 |