Wavelength‐Tunable Micro/Nanolasers

Micro/nanolasers (MNLs) emit coherent light on the micro/nanoscale. Research on the application of MNLs has progressed rapidly in the past two decades because of their great potential for optoelectronics with compact sizes, low cost, and low energy consumption. Wavelength‐tunable MNLs are essential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2019-09, Vol.7 (17), p.n/a
Hauptverfasser: Zhuge, Ming‐Hua, Pan, Caofeng, Zheng, Yazhi, Tang, Jianbin, Ullah, Salman, Ma, Yaoguang, Yang, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 17
container_start_page
container_title Advanced optical materials
container_volume 7
creator Zhuge, Ming‐Hua
Pan, Caofeng
Zheng, Yazhi
Tang, Jianbin
Ullah, Salman
Ma, Yaoguang
Yang, Qing
description Micro/nanolasers (MNLs) emit coherent light on the micro/nanoscale. Research on the application of MNLs has progressed rapidly in the past two decades because of their great potential for optoelectronics with compact sizes, low cost, and low energy consumption. Wavelength‐tunable MNLs are essential for a variety of fields including optical communications, solid‐state lighting, and on‐chip wavelength‐division multiplexing. Thus far, tremendous progress is achieved toward the development of wavelength‐tunable MNLs based on bandgap tuning and cavity design. Lasing wavelength is substantially defined by material bandgap, tuned by changing the geometry of the cavity structures, and can also, to some extent, be influenced by operational environment. This review is focused on the intrinsic merits of wavelength‐tunable MNLs, and the recent progress is examined. Bandgap engineering, materials synthesis, cavity structure design, wavelength‐tuning principles, and lasing performance are explored and systematically discussed. Finally, the current research status and perspectives on possible future applications are summarized. Wavelength‐tunable micro/nanolasers are essential for a variety of applications including optical communications, solid‐state lighting, and on‐chip wavelength‐division multiplexing. Up to now, tremendous progress is achieved toward the development of wavelength‐tunable micro/nanolasers with increasing performances. In this review, an understanding of the principles along with very recent reports of this promising field is summarized and discussed.
doi_str_mv 10.1002/adom.201900275
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2284873384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284873384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3565-acf10242385c482992b82398fa88810e5bccbdf361a7326ae5a61db63b78d4f33</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWGq3rgVxOdP8TpJlqb_Q2k3FZUgyiU6ZztSko3TnI_iMPokpI-rO1b0HvnPv4QBwimCOIMRjXbbrHEMkk-DsAAwwkixDkKPDP_sxGMW4ghAmQSTlA3DxqF9d7Zqn7fPn-8eya7Sp3dm8sqEd3-umrXV0IZ6AI6_r6Ebfcwgerq-W09tstri5m05mmSWsYJm2HkFMMRHMUoGlxEZgIoXXQggEHTPWmtKTAmlOcKEd0wUqTUEMFyX1hAzBeX93E9qXzsWtWrVdaNJLhbGgghMiaKLynkohYwzOq02o1jrsFIJq34bat6F-2kgG2Rveqtrt_qHV5HIx__V-Ac_VYl8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284873384</pqid></control><display><type>article</type><title>Wavelength‐Tunable Micro/Nanolasers</title><source>Wiley Journals</source><creator>Zhuge, Ming‐Hua ; Pan, Caofeng ; Zheng, Yazhi ; Tang, Jianbin ; Ullah, Salman ; Ma, Yaoguang ; Yang, Qing</creator><creatorcontrib>Zhuge, Ming‐Hua ; Pan, Caofeng ; Zheng, Yazhi ; Tang, Jianbin ; Ullah, Salman ; Ma, Yaoguang ; Yang, Qing</creatorcontrib><description>Micro/nanolasers (MNLs) emit coherent light on the micro/nanoscale. Research on the application of MNLs has progressed rapidly in the past two decades because of their great potential for optoelectronics with compact sizes, low cost, and low energy consumption. Wavelength‐tunable MNLs are essential for a variety of fields including optical communications, solid‐state lighting, and on‐chip wavelength‐division multiplexing. Thus far, tremendous progress is achieved toward the development of wavelength‐tunable MNLs based on bandgap tuning and cavity design. Lasing wavelength is substantially defined by material bandgap, tuned by changing the geometry of the cavity structures, and can also, to some extent, be influenced by operational environment. This review is focused on the intrinsic merits of wavelength‐tunable MNLs, and the recent progress is examined. Bandgap engineering, materials synthesis, cavity structure design, wavelength‐tuning principles, and lasing performance are explored and systematically discussed. Finally, the current research status and perspectives on possible future applications are summarized. Wavelength‐tunable micro/nanolasers are essential for a variety of applications including optical communications, solid‐state lighting, and on‐chip wavelength‐division multiplexing. Up to now, tremendous progress is achieved toward the development of wavelength‐tunable micro/nanolasers with increasing performances. In this review, an understanding of the principles along with very recent reports of this promising field is summarized and discussed.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201900275</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>bandgap engineering ; Coherent light ; Energy consumption ; Energy gap ; Lasing ; Materials science ; micro/nanolasers ; Multiplexing ; nanocavity design ; Optics ; Optoelectronics ; Tuning ; wavelength tuning</subject><ispartof>Advanced optical materials, 2019-09, Vol.7 (17), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3565-acf10242385c482992b82398fa88810e5bccbdf361a7326ae5a61db63b78d4f33</citedby><cites>FETCH-LOGICAL-c3565-acf10242385c482992b82398fa88810e5bccbdf361a7326ae5a61db63b78d4f33</cites><orcidid>0000-0001-5324-4832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.201900275$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.201900275$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhuge, Ming‐Hua</creatorcontrib><creatorcontrib>Pan, Caofeng</creatorcontrib><creatorcontrib>Zheng, Yazhi</creatorcontrib><creatorcontrib>Tang, Jianbin</creatorcontrib><creatorcontrib>Ullah, Salman</creatorcontrib><creatorcontrib>Ma, Yaoguang</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><title>Wavelength‐Tunable Micro/Nanolasers</title><title>Advanced optical materials</title><description>Micro/nanolasers (MNLs) emit coherent light on the micro/nanoscale. Research on the application of MNLs has progressed rapidly in the past two decades because of their great potential for optoelectronics with compact sizes, low cost, and low energy consumption. Wavelength‐tunable MNLs are essential for a variety of fields including optical communications, solid‐state lighting, and on‐chip wavelength‐division multiplexing. Thus far, tremendous progress is achieved toward the development of wavelength‐tunable MNLs based on bandgap tuning and cavity design. Lasing wavelength is substantially defined by material bandgap, tuned by changing the geometry of the cavity structures, and can also, to some extent, be influenced by operational environment. This review is focused on the intrinsic merits of wavelength‐tunable MNLs, and the recent progress is examined. Bandgap engineering, materials synthesis, cavity structure design, wavelength‐tuning principles, and lasing performance are explored and systematically discussed. Finally, the current research status and perspectives on possible future applications are summarized. Wavelength‐tunable micro/nanolasers are essential for a variety of applications including optical communications, solid‐state lighting, and on‐chip wavelength‐division multiplexing. Up to now, tremendous progress is achieved toward the development of wavelength‐tunable micro/nanolasers with increasing performances. In this review, an understanding of the principles along with very recent reports of this promising field is summarized and discussed.</description><subject>bandgap engineering</subject><subject>Coherent light</subject><subject>Energy consumption</subject><subject>Energy gap</subject><subject>Lasing</subject><subject>Materials science</subject><subject>micro/nanolasers</subject><subject>Multiplexing</subject><subject>nanocavity design</subject><subject>Optics</subject><subject>Optoelectronics</subject><subject>Tuning</subject><subject>wavelength tuning</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWGq3rgVxOdP8TpJlqb_Q2k3FZUgyiU6ZztSko3TnI_iMPokpI-rO1b0HvnPv4QBwimCOIMRjXbbrHEMkk-DsAAwwkixDkKPDP_sxGMW4ghAmQSTlA3DxqF9d7Zqn7fPn-8eya7Sp3dm8sqEd3-umrXV0IZ6AI6_r6Ebfcwgerq-W09tstri5m05mmSWsYJm2HkFMMRHMUoGlxEZgIoXXQggEHTPWmtKTAmlOcKEd0wUqTUEMFyX1hAzBeX93E9qXzsWtWrVdaNJLhbGgghMiaKLynkohYwzOq02o1jrsFIJq34bat6F-2kgG2Rveqtrt_qHV5HIx__V-Ac_VYl8</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Zhuge, Ming‐Hua</creator><creator>Pan, Caofeng</creator><creator>Zheng, Yazhi</creator><creator>Tang, Jianbin</creator><creator>Ullah, Salman</creator><creator>Ma, Yaoguang</creator><creator>Yang, Qing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5324-4832</orcidid></search><sort><creationdate>20190901</creationdate><title>Wavelength‐Tunable Micro/Nanolasers</title><author>Zhuge, Ming‐Hua ; Pan, Caofeng ; Zheng, Yazhi ; Tang, Jianbin ; Ullah, Salman ; Ma, Yaoguang ; Yang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3565-acf10242385c482992b82398fa88810e5bccbdf361a7326ae5a61db63b78d4f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bandgap engineering</topic><topic>Coherent light</topic><topic>Energy consumption</topic><topic>Energy gap</topic><topic>Lasing</topic><topic>Materials science</topic><topic>micro/nanolasers</topic><topic>Multiplexing</topic><topic>nanocavity design</topic><topic>Optics</topic><topic>Optoelectronics</topic><topic>Tuning</topic><topic>wavelength tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhuge, Ming‐Hua</creatorcontrib><creatorcontrib>Pan, Caofeng</creatorcontrib><creatorcontrib>Zheng, Yazhi</creatorcontrib><creatorcontrib>Tang, Jianbin</creatorcontrib><creatorcontrib>Ullah, Salman</creatorcontrib><creatorcontrib>Ma, Yaoguang</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuge, Ming‐Hua</au><au>Pan, Caofeng</au><au>Zheng, Yazhi</au><au>Tang, Jianbin</au><au>Ullah, Salman</au><au>Ma, Yaoguang</au><au>Yang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelength‐Tunable Micro/Nanolasers</atitle><jtitle>Advanced optical materials</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>7</volume><issue>17</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Micro/nanolasers (MNLs) emit coherent light on the micro/nanoscale. Research on the application of MNLs has progressed rapidly in the past two decades because of their great potential for optoelectronics with compact sizes, low cost, and low energy consumption. Wavelength‐tunable MNLs are essential for a variety of fields including optical communications, solid‐state lighting, and on‐chip wavelength‐division multiplexing. Thus far, tremendous progress is achieved toward the development of wavelength‐tunable MNLs based on bandgap tuning and cavity design. Lasing wavelength is substantially defined by material bandgap, tuned by changing the geometry of the cavity structures, and can also, to some extent, be influenced by operational environment. This review is focused on the intrinsic merits of wavelength‐tunable MNLs, and the recent progress is examined. Bandgap engineering, materials synthesis, cavity structure design, wavelength‐tuning principles, and lasing performance are explored and systematically discussed. Finally, the current research status and perspectives on possible future applications are summarized. Wavelength‐tunable micro/nanolasers are essential for a variety of applications including optical communications, solid‐state lighting, and on‐chip wavelength‐division multiplexing. Up to now, tremendous progress is achieved toward the development of wavelength‐tunable micro/nanolasers with increasing performances. In this review, an understanding of the principles along with very recent reports of this promising field is summarized and discussed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201900275</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5324-4832</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2019-09, Vol.7 (17), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2284873384
source Wiley Journals
subjects bandgap engineering
Coherent light
Energy consumption
Energy gap
Lasing
Materials science
micro/nanolasers
Multiplexing
nanocavity design
Optics
Optoelectronics
Tuning
wavelength tuning
title Wavelength‐Tunable Micro/Nanolasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelength%E2%80%90Tunable%20Micro/Nanolasers&rft.jtitle=Advanced%20optical%20materials&rft.au=Zhuge,%20Ming%E2%80%90Hua&rft.date=2019-09-01&rft.volume=7&rft.issue=17&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201900275&rft_dat=%3Cproquest_cross%3E2284873384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284873384&rft_id=info:pmid/&rfr_iscdi=true