Continuous flattening of the 2-skeletons in regular simplexes and cross-polytopes
We previously showed one can continuously flatten the surface of a regular tetrahedron onto any of its faces without stretching and cutting. This is accomplished by moving creases to change the shapes of some faces successively, following Sabitov’s volume preserving theorem. We extend this result to...
Gespeichert in:
Veröffentlicht in: | Journal of geometry 2019-12, Vol.110 (3), p.1-12, Article 47 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Journal of geometry |
container_volume | 110 |
creator | Itoh, Jin-ichi Nara, Chie |
description | We previously showed one can continuously flatten the surface of a regular tetrahedron onto any of its faces without stretching and cutting. This is accomplished by moving creases to change the shapes of some faces successively, following Sabitov’s volume preserving theorem. We extend this result to higher dimensional regular simplexes and cross-polytopes by considering the 2-dimensional skeleton of a polytope corresponding to the surface of a three dimensional polyhedron. |
doi_str_mv | 10.1007/s00022-019-0504-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2284676719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284676719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-af1f2441884e260f73e73caa4af1c9db07ece37fb0a8a8ca050410db67b73cd03</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Bz9FJGpv2KIu6woIIeg5pO1m7dpOapOD-e1srePI0h_neezOPkEsO1xxA3UQAEIIBLxncgmRwRBZcCmBFWapjsgCQigmZF6fkLMbdSGciLxfkZeVdat3gh0htZ1JC17ot9Zamd6SCxQ_sMHkXaetowO3QmUBju-87_MJIjWtoHXyMrPfdIfke4zk5saaLePE7l-Tt4f51tWab58en1d2G1RnPEzOWWyElLwqJIgerMlRZbYwcF3XZVKCwxkzZCkxhitpMX3FoqlxVI9dAtiRXs28f_OeAMemdH4IbI7UQhcxVrng5Unymfq4MaHUf2r0JB81BT83puTk9NqenDD05i1kTR9ZtMfw5_y_6Bl1Vcbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284676719</pqid></control><display><type>article</type><title>Continuous flattening of the 2-skeletons in regular simplexes and cross-polytopes</title><source>SpringerLink Journals</source><creator>Itoh, Jin-ichi ; Nara, Chie</creator><creatorcontrib>Itoh, Jin-ichi ; Nara, Chie</creatorcontrib><description>We previously showed one can continuously flatten the surface of a regular tetrahedron onto any of its faces without stretching and cutting. This is accomplished by moving creases to change the shapes of some faces successively, following Sabitov’s volume preserving theorem. We extend this result to higher dimensional regular simplexes and cross-polytopes by considering the 2-dimensional skeleton of a polytope corresponding to the surface of a three dimensional polyhedron.</description><identifier>ISSN: 0047-2468</identifier><identifier>EISSN: 1420-8997</identifier><identifier>DOI: 10.1007/s00022-019-0504-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Geometry ; Mathematics ; Mathematics and Statistics ; Polytopes ; Tetrahedra</subject><ispartof>Journal of geometry, 2019-12, Vol.110 (3), p.1-12, Article 47</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-af1f2441884e260f73e73caa4af1c9db07ece37fb0a8a8ca050410db67b73cd03</citedby><cites>FETCH-LOGICAL-c316t-af1f2441884e260f73e73caa4af1c9db07ece37fb0a8a8ca050410db67b73cd03</cites><orcidid>0000-0003-0748-9200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00022-019-0504-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00022-019-0504-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Itoh, Jin-ichi</creatorcontrib><creatorcontrib>Nara, Chie</creatorcontrib><title>Continuous flattening of the 2-skeletons in regular simplexes and cross-polytopes</title><title>Journal of geometry</title><addtitle>J. Geom</addtitle><description>We previously showed one can continuously flatten the surface of a regular tetrahedron onto any of its faces without stretching and cutting. This is accomplished by moving creases to change the shapes of some faces successively, following Sabitov’s volume preserving theorem. We extend this result to higher dimensional regular simplexes and cross-polytopes by considering the 2-dimensional skeleton of a polytope corresponding to the surface of a three dimensional polyhedron.</description><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polytopes</subject><subject>Tetrahedra</subject><issn>0047-2468</issn><issn>1420-8997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Bz9FJGpv2KIu6woIIeg5pO1m7dpOapOD-e1srePI0h_neezOPkEsO1xxA3UQAEIIBLxncgmRwRBZcCmBFWapjsgCQigmZF6fkLMbdSGciLxfkZeVdat3gh0htZ1JC17ot9Zamd6SCxQ_sMHkXaetowO3QmUBju-87_MJIjWtoHXyMrPfdIfke4zk5saaLePE7l-Tt4f51tWab58en1d2G1RnPEzOWWyElLwqJIgerMlRZbYwcF3XZVKCwxkzZCkxhitpMX3FoqlxVI9dAtiRXs28f_OeAMemdH4IbI7UQhcxVrng5Unymfq4MaHUf2r0JB81BT83puTk9NqenDD05i1kTR9ZtMfw5_y_6Bl1Vcbo</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Itoh, Jin-ichi</creator><creator>Nara, Chie</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0748-9200</orcidid></search><sort><creationdate>20191201</creationdate><title>Continuous flattening of the 2-skeletons in regular simplexes and cross-polytopes</title><author>Itoh, Jin-ichi ; Nara, Chie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-af1f2441884e260f73e73caa4af1c9db07ece37fb0a8a8ca050410db67b73cd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polytopes</topic><topic>Tetrahedra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Itoh, Jin-ichi</creatorcontrib><creatorcontrib>Nara, Chie</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Itoh, Jin-ichi</au><au>Nara, Chie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous flattening of the 2-skeletons in regular simplexes and cross-polytopes</atitle><jtitle>Journal of geometry</jtitle><stitle>J. Geom</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>110</volume><issue>3</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>47</artnum><issn>0047-2468</issn><eissn>1420-8997</eissn><abstract>We previously showed one can continuously flatten the surface of a regular tetrahedron onto any of its faces without stretching and cutting. This is accomplished by moving creases to change the shapes of some faces successively, following Sabitov’s volume preserving theorem. We extend this result to higher dimensional regular simplexes and cross-polytopes by considering the 2-dimensional skeleton of a polytope corresponding to the surface of a three dimensional polyhedron.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00022-019-0504-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0748-9200</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-2468 |
ispartof | Journal of geometry, 2019-12, Vol.110 (3), p.1-12, Article 47 |
issn | 0047-2468 1420-8997 |
language | eng |
recordid | cdi_proquest_journals_2284676719 |
source | SpringerLink Journals |
subjects | Geometry Mathematics Mathematics and Statistics Polytopes Tetrahedra |
title | Continuous flattening of the 2-skeletons in regular simplexes and cross-polytopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20flattening%20of%20the%202-skeletons%20in%20regular%20simplexes%20and%20cross-polytopes&rft.jtitle=Journal%20of%20geometry&rft.au=Itoh,%20Jin-ichi&rft.date=2019-12-01&rft.volume=110&rft.issue=3&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=47&rft.issn=0047-2468&rft.eissn=1420-8997&rft_id=info:doi/10.1007/s00022-019-0504-0&rft_dat=%3Cproquest_cross%3E2284676719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284676719&rft_id=info:pmid/&rfr_iscdi=true |