Continuous flattening of the 2-skeletons in regular simplexes and cross-polytopes

We previously showed one can continuously flatten the surface of a regular tetrahedron onto any of its faces without stretching and cutting. This is accomplished by moving creases to change the shapes of some faces successively, following Sabitov’s volume preserving theorem. We extend this result to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry 2019-12, Vol.110 (3), p.1-12, Article 47
Hauptverfasser: Itoh, Jin-ichi, Nara, Chie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 3
container_start_page 1
container_title Journal of geometry
container_volume 110
creator Itoh, Jin-ichi
Nara, Chie
description We previously showed one can continuously flatten the surface of a regular tetrahedron onto any of its faces without stretching and cutting. This is accomplished by moving creases to change the shapes of some faces successively, following Sabitov’s volume preserving theorem. We extend this result to higher dimensional regular simplexes and cross-polytopes by considering the 2-dimensional skeleton of a polytope corresponding to the surface of a three dimensional polyhedron.
doi_str_mv 10.1007/s00022-019-0504-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2284676719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284676719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-af1f2441884e260f73e73caa4af1c9db07ece37fb0a8a8ca050410db67b73cd03</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Bz9FJGpv2KIu6woIIeg5pO1m7dpOapOD-e1srePI0h_neezOPkEsO1xxA3UQAEIIBLxncgmRwRBZcCmBFWapjsgCQigmZF6fkLMbdSGciLxfkZeVdat3gh0htZ1JC17ot9Zamd6SCxQ_sMHkXaetowO3QmUBju-87_MJIjWtoHXyMrPfdIfke4zk5saaLePE7l-Tt4f51tWab58en1d2G1RnPEzOWWyElLwqJIgerMlRZbYwcF3XZVKCwxkzZCkxhitpMX3FoqlxVI9dAtiRXs28f_OeAMemdH4IbI7UQhcxVrng5Unymfq4MaHUf2r0JB81BT83puTk9NqenDD05i1kTR9ZtMfw5_y_6Bl1Vcbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284676719</pqid></control><display><type>article</type><title>Continuous flattening of the 2-skeletons in regular simplexes and cross-polytopes</title><source>SpringerLink Journals</source><creator>Itoh, Jin-ichi ; Nara, Chie</creator><creatorcontrib>Itoh, Jin-ichi ; Nara, Chie</creatorcontrib><description>We previously showed one can continuously flatten the surface of a regular tetrahedron onto any of its faces without stretching and cutting. This is accomplished by moving creases to change the shapes of some faces successively, following Sabitov’s volume preserving theorem. We extend this result to higher dimensional regular simplexes and cross-polytopes by considering the 2-dimensional skeleton of a polytope corresponding to the surface of a three dimensional polyhedron.</description><identifier>ISSN: 0047-2468</identifier><identifier>EISSN: 1420-8997</identifier><identifier>DOI: 10.1007/s00022-019-0504-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Geometry ; Mathematics ; Mathematics and Statistics ; Polytopes ; Tetrahedra</subject><ispartof>Journal of geometry, 2019-12, Vol.110 (3), p.1-12, Article 47</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-af1f2441884e260f73e73caa4af1c9db07ece37fb0a8a8ca050410db67b73cd03</citedby><cites>FETCH-LOGICAL-c316t-af1f2441884e260f73e73caa4af1c9db07ece37fb0a8a8ca050410db67b73cd03</cites><orcidid>0000-0003-0748-9200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00022-019-0504-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00022-019-0504-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Itoh, Jin-ichi</creatorcontrib><creatorcontrib>Nara, Chie</creatorcontrib><title>Continuous flattening of the 2-skeletons in regular simplexes and cross-polytopes</title><title>Journal of geometry</title><addtitle>J. Geom</addtitle><description>We previously showed one can continuously flatten the surface of a regular tetrahedron onto any of its faces without stretching and cutting. This is accomplished by moving creases to change the shapes of some faces successively, following Sabitov’s volume preserving theorem. We extend this result to higher dimensional regular simplexes and cross-polytopes by considering the 2-dimensional skeleton of a polytope corresponding to the surface of a three dimensional polyhedron.</description><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polytopes</subject><subject>Tetrahedra</subject><issn>0047-2468</issn><issn>1420-8997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Bz9FJGpv2KIu6woIIeg5pO1m7dpOapOD-e1srePI0h_neezOPkEsO1xxA3UQAEIIBLxncgmRwRBZcCmBFWapjsgCQigmZF6fkLMbdSGciLxfkZeVdat3gh0htZ1JC17ot9Zamd6SCxQ_sMHkXaetowO3QmUBju-87_MJIjWtoHXyMrPfdIfke4zk5saaLePE7l-Tt4f51tWab58en1d2G1RnPEzOWWyElLwqJIgerMlRZbYwcF3XZVKCwxkzZCkxhitpMX3FoqlxVI9dAtiRXs28f_OeAMemdH4IbI7UQhcxVrng5Unymfq4MaHUf2r0JB81BT83puTk9NqenDD05i1kTR9ZtMfw5_y_6Bl1Vcbo</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Itoh, Jin-ichi</creator><creator>Nara, Chie</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0748-9200</orcidid></search><sort><creationdate>20191201</creationdate><title>Continuous flattening of the 2-skeletons in regular simplexes and cross-polytopes</title><author>Itoh, Jin-ichi ; Nara, Chie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-af1f2441884e260f73e73caa4af1c9db07ece37fb0a8a8ca050410db67b73cd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polytopes</topic><topic>Tetrahedra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Itoh, Jin-ichi</creatorcontrib><creatorcontrib>Nara, Chie</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Itoh, Jin-ichi</au><au>Nara, Chie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous flattening of the 2-skeletons in regular simplexes and cross-polytopes</atitle><jtitle>Journal of geometry</jtitle><stitle>J. Geom</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>110</volume><issue>3</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>47</artnum><issn>0047-2468</issn><eissn>1420-8997</eissn><abstract>We previously showed one can continuously flatten the surface of a regular tetrahedron onto any of its faces without stretching and cutting. This is accomplished by moving creases to change the shapes of some faces successively, following Sabitov’s volume preserving theorem. We extend this result to higher dimensional regular simplexes and cross-polytopes by considering the 2-dimensional skeleton of a polytope corresponding to the surface of a three dimensional polyhedron.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00022-019-0504-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0748-9200</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0047-2468
ispartof Journal of geometry, 2019-12, Vol.110 (3), p.1-12, Article 47
issn 0047-2468
1420-8997
language eng
recordid cdi_proquest_journals_2284676719
source SpringerLink Journals
subjects Geometry
Mathematics
Mathematics and Statistics
Polytopes
Tetrahedra
title Continuous flattening of the 2-skeletons in regular simplexes and cross-polytopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20flattening%20of%20the%202-skeletons%20in%20regular%20simplexes%20and%20cross-polytopes&rft.jtitle=Journal%20of%20geometry&rft.au=Itoh,%20Jin-ichi&rft.date=2019-12-01&rft.volume=110&rft.issue=3&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=47&rft.issn=0047-2468&rft.eissn=1420-8997&rft_id=info:doi/10.1007/s00022-019-0504-0&rft_dat=%3Cproquest_cross%3E2284676719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284676719&rft_id=info:pmid/&rfr_iscdi=true