Numerical Study of Evaporative Cooling in the Space Station

In this paper, we numerically studied the effects of mechanical vibration and magnetic fields on evaporative cooling process carried in space station by direct simulation Monte Carlo method. Simulated with the vibration data of international space station, we found that the cooling process would suf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-09
Hauptverfasser: Fan, Bo, Zhao, Luheng, Zhang, Yin, Sun, Jingxin, Xiong, Wei, Chen, Jinqiang, Chen, Xuzong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fan, Bo
Zhao, Luheng
Zhang, Yin
Sun, Jingxin
Xiong, Wei
Chen, Jinqiang
Chen, Xuzong
description In this paper, we numerically studied the effects of mechanical vibration and magnetic fields on evaporative cooling process carried in space station by direct simulation Monte Carlo method. Simulated with the vibration data of international space station, we found that the cooling process would suffer great atomic losses until the accelerations reduced tenfold at least. In addition, if we enlarge the s-wave scattering length five times by Feshbach resonance, the PSD increased to 50 compared to 3 of no magnetic fields situation after 5 seconds evaporative cooling. We also simulated the two stages crossed beam evaporative cooling process (TSCBC) under both physical impacts and obtain \(4\times10^5\) \(^{85}\)Rb atoms with a temperature of 8 pK. These results are of significance to the cold atom experiments carried out on space station in the future.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2284370042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284370042</sourcerecordid><originalsourceid>FETCH-proquest_journals_22843700423</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9ivNTS3KTE7MUQguKU2pVMhPU3AtSyzIL0osySxLVXDOz8_JzEtXyMxTKMlIVQguSEwGkiVAyfw8HgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzKyMDE2NzAwMTImThUA11g2xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284370042</pqid></control><display><type>article</type><title>Numerical Study of Evaporative Cooling in the Space Station</title><source>Free E- Journals</source><creator>Fan, Bo ; Zhao, Luheng ; Zhang, Yin ; Sun, Jingxin ; Xiong, Wei ; Chen, Jinqiang ; Chen, Xuzong</creator><creatorcontrib>Fan, Bo ; Zhao, Luheng ; Zhang, Yin ; Sun, Jingxin ; Xiong, Wei ; Chen, Jinqiang ; Chen, Xuzong</creatorcontrib><description>In this paper, we numerically studied the effects of mechanical vibration and magnetic fields on evaporative cooling process carried in space station by direct simulation Monte Carlo method. Simulated with the vibration data of international space station, we found that the cooling process would suffer great atomic losses until the accelerations reduced tenfold at least. In addition, if we enlarge the s-wave scattering length five times by Feshbach resonance, the PSD increased to 50 compared to 3 of no magnetic fields situation after 5 seconds evaporative cooling. We also simulated the two stages crossed beam evaporative cooling process (TSCBC) under both physical impacts and obtain \(4\times10^5\) \(^{85}\)Rb atoms with a temperature of 8 pK. These results are of significance to the cold atom experiments carried out on space station in the future.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Cooling ; Direct simulation Monte Carlo method ; Evaporation ; Evaporative cooling ; International Space Station ; Magnetic fields ; Resonance scattering ; Space stations ; Vibration ; Wave scattering</subject><ispartof>arXiv.org, 2019-09</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Fan, Bo</creatorcontrib><creatorcontrib>Zhao, Luheng</creatorcontrib><creatorcontrib>Zhang, Yin</creatorcontrib><creatorcontrib>Sun, Jingxin</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Chen, Jinqiang</creatorcontrib><creatorcontrib>Chen, Xuzong</creatorcontrib><title>Numerical Study of Evaporative Cooling in the Space Station</title><title>arXiv.org</title><description>In this paper, we numerically studied the effects of mechanical vibration and magnetic fields on evaporative cooling process carried in space station by direct simulation Monte Carlo method. Simulated with the vibration data of international space station, we found that the cooling process would suffer great atomic losses until the accelerations reduced tenfold at least. In addition, if we enlarge the s-wave scattering length five times by Feshbach resonance, the PSD increased to 50 compared to 3 of no magnetic fields situation after 5 seconds evaporative cooling. We also simulated the two stages crossed beam evaporative cooling process (TSCBC) under both physical impacts and obtain \(4\times10^5\) \(^{85}\)Rb atoms with a temperature of 8 pK. These results are of significance to the cold atom experiments carried out on space station in the future.</description><subject>Computer simulation</subject><subject>Cooling</subject><subject>Direct simulation Monte Carlo method</subject><subject>Evaporation</subject><subject>Evaporative cooling</subject><subject>International Space Station</subject><subject>Magnetic fields</subject><subject>Resonance scattering</subject><subject>Space stations</subject><subject>Vibration</subject><subject>Wave scattering</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9ivNTS3KTE7MUQguKU2pVMhPU3AtSyzIL0osySxLVXDOz8_JzEtXyMxTKMlIVQguSEwGkiVAyfw8HgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzKyMDE2NzAwMTImThUA11g2xQ</recordid><startdate>20190902</startdate><enddate>20190902</enddate><creator>Fan, Bo</creator><creator>Zhao, Luheng</creator><creator>Zhang, Yin</creator><creator>Sun, Jingxin</creator><creator>Xiong, Wei</creator><creator>Chen, Jinqiang</creator><creator>Chen, Xuzong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190902</creationdate><title>Numerical Study of Evaporative Cooling in the Space Station</title><author>Fan, Bo ; Zhao, Luheng ; Zhang, Yin ; Sun, Jingxin ; Xiong, Wei ; Chen, Jinqiang ; Chen, Xuzong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22843700423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Cooling</topic><topic>Direct simulation Monte Carlo method</topic><topic>Evaporation</topic><topic>Evaporative cooling</topic><topic>International Space Station</topic><topic>Magnetic fields</topic><topic>Resonance scattering</topic><topic>Space stations</topic><topic>Vibration</topic><topic>Wave scattering</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan, Bo</creatorcontrib><creatorcontrib>Zhao, Luheng</creatorcontrib><creatorcontrib>Zhang, Yin</creatorcontrib><creatorcontrib>Sun, Jingxin</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Chen, Jinqiang</creatorcontrib><creatorcontrib>Chen, Xuzong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Bo</au><au>Zhao, Luheng</au><au>Zhang, Yin</au><au>Sun, Jingxin</au><au>Xiong, Wei</au><au>Chen, Jinqiang</au><au>Chen, Xuzong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Numerical Study of Evaporative Cooling in the Space Station</atitle><jtitle>arXiv.org</jtitle><date>2019-09-02</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>In this paper, we numerically studied the effects of mechanical vibration and magnetic fields on evaporative cooling process carried in space station by direct simulation Monte Carlo method. Simulated with the vibration data of international space station, we found that the cooling process would suffer great atomic losses until the accelerations reduced tenfold at least. In addition, if we enlarge the s-wave scattering length five times by Feshbach resonance, the PSD increased to 50 compared to 3 of no magnetic fields situation after 5 seconds evaporative cooling. We also simulated the two stages crossed beam evaporative cooling process (TSCBC) under both physical impacts and obtain \(4\times10^5\) \(^{85}\)Rb atoms with a temperature of 8 pK. These results are of significance to the cold atom experiments carried out on space station in the future.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2284370042
source Free E- Journals
subjects Computer simulation
Cooling
Direct simulation Monte Carlo method
Evaporation
Evaporative cooling
International Space Station
Magnetic fields
Resonance scattering
Space stations
Vibration
Wave scattering
title Numerical Study of Evaporative Cooling in the Space Station
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Numerical%20Study%20of%20Evaporative%20Cooling%20in%20the%20Space%20Station&rft.jtitle=arXiv.org&rft.au=Fan,%20Bo&rft.date=2019-09-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2284370042%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284370042&rft_id=info:pmid/&rfr_iscdi=true