On the semi-regular frames of translates

In this note, we fix a real invertible \(d\times d\) matrix \(\mathcal{A}\) and consider \(\mathcal{A}\mathbb{Z}^d\) as an index set. For \(f\in L^2(\mathbb{R}^d)\), let \(\Phi^{\mathcal{A}}_{f}:=\frac{1}{|\det \mathcal{A}|}\sum_{k\in \mathbb{Z}^d}|\hat{f}(\mathcal{A}^T)^{-1}(\cdot+k)|^2\) be the pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-08
Hauptverfasser: Valizadeh, F, Rahimi, H, Kamyabi Gol, R A, Esmaeelzadeh, F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Valizadeh, F
Rahimi, H
Kamyabi Gol, R A
Esmaeelzadeh, F
description In this note, we fix a real invertible \(d\times d\) matrix \(\mathcal{A}\) and consider \(\mathcal{A}\mathbb{Z}^d\) as an index set. For \(f\in L^2(\mathbb{R}^d)\), let \(\Phi^{\mathcal{A}}_{f}:=\frac{1}{|\det \mathcal{A}|}\sum_{k\in \mathbb{Z}^d}|\hat{f}(\mathcal{A}^T)^{-1}(\cdot+k)|^2\) be the periodization of \(|\hat{f}|^2\). By using \(\Phi^{\mathcal{A}}_{f}\), among other things, we characterize when the sequence \(\tau_{\mathcal{A}}(f):=\{f(\cdot-\mathcal{A}k)\}_{k\in \mathbb{Z}^d}\) is a Bessel sequence, frame of translates, Riesz basis, or orthonormal basis. And finally, we construct an example, in which \(\tau_{\mathcal{A}}(f)\) is a Parseval frame of translates, but not a Riesz sequence.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2284364131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284364131</sourcerecordid><originalsourceid>FETCH-proquest_journals_22843641313</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ8M9TKMlIVShOzc3ULUpNL81JLFJIK0rMTS1WyE9TKClKzCvOSSxJLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjIwsTYzMTQ2NDY-JUAQCP0S_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284364131</pqid></control><display><type>article</type><title>On the semi-regular frames of translates</title><source>Ejournal Publishers (free content)</source><creator>Valizadeh, F ; Rahimi, H ; Kamyabi Gol, R A ; Esmaeelzadeh, F</creator><creatorcontrib>Valizadeh, F ; Rahimi, H ; Kamyabi Gol, R A ; Esmaeelzadeh, F</creatorcontrib><description>In this note, we fix a real invertible \(d\times d\) matrix \(\mathcal{A}\) and consider \(\mathcal{A}\mathbb{Z}^d\) as an index set. For \(f\in L^2(\mathbb{R}^d)\), let \(\Phi^{\mathcal{A}}_{f}:=\frac{1}{|\det \mathcal{A}|}\sum_{k\in \mathbb{Z}^d}|\hat{f}(\mathcal{A}^T)^{-1}(\cdot+k)|^2\) be the periodization of \(|\hat{f}|^2\). By using \(\Phi^{\mathcal{A}}_{f}\), among other things, we characterize when the sequence \(\tau_{\mathcal{A}}(f):=\{f(\cdot-\mathcal{A}k)\}_{k\in \mathbb{Z}^d}\) is a Bessel sequence, frame of translates, Riesz basis, or orthonormal basis. And finally, we construct an example, in which \(\tau_{\mathcal{A}}(f)\) is a Parseval frame of translates, but not a Riesz sequence.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2019-08</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Valizadeh, F</creatorcontrib><creatorcontrib>Rahimi, H</creatorcontrib><creatorcontrib>Kamyabi Gol, R A</creatorcontrib><creatorcontrib>Esmaeelzadeh, F</creatorcontrib><title>On the semi-regular frames of translates</title><title>arXiv.org</title><description>In this note, we fix a real invertible \(d\times d\) matrix \(\mathcal{A}\) and consider \(\mathcal{A}\mathbb{Z}^d\) as an index set. For \(f\in L^2(\mathbb{R}^d)\), let \(\Phi^{\mathcal{A}}_{f}:=\frac{1}{|\det \mathcal{A}|}\sum_{k\in \mathbb{Z}^d}|\hat{f}(\mathcal{A}^T)^{-1}(\cdot+k)|^2\) be the periodization of \(|\hat{f}|^2\). By using \(\Phi^{\mathcal{A}}_{f}\), among other things, we characterize when the sequence \(\tau_{\mathcal{A}}(f):=\{f(\cdot-\mathcal{A}k)\}_{k\in \mathbb{Z}^d}\) is a Bessel sequence, frame of translates, Riesz basis, or orthonormal basis. And finally, we construct an example, in which \(\tau_{\mathcal{A}}(f)\) is a Parseval frame of translates, but not a Riesz sequence.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ8M9TKMlIVShOzc3ULUpNL81JLFJIK0rMTS1WyE9TKClKzCvOSSxJLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjIwsTYzMTQ2NDY-JUAQCP0S_w</recordid><startdate>20190831</startdate><enddate>20190831</enddate><creator>Valizadeh, F</creator><creator>Rahimi, H</creator><creator>Kamyabi Gol, R A</creator><creator>Esmaeelzadeh, F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190831</creationdate><title>On the semi-regular frames of translates</title><author>Valizadeh, F ; Rahimi, H ; Kamyabi Gol, R A ; Esmaeelzadeh, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22843641313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Valizadeh, F</creatorcontrib><creatorcontrib>Rahimi, H</creatorcontrib><creatorcontrib>Kamyabi Gol, R A</creatorcontrib><creatorcontrib>Esmaeelzadeh, F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valizadeh, F</au><au>Rahimi, H</au><au>Kamyabi Gol, R A</au><au>Esmaeelzadeh, F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the semi-regular frames of translates</atitle><jtitle>arXiv.org</jtitle><date>2019-08-31</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>In this note, we fix a real invertible \(d\times d\) matrix \(\mathcal{A}\) and consider \(\mathcal{A}\mathbb{Z}^d\) as an index set. For \(f\in L^2(\mathbb{R}^d)\), let \(\Phi^{\mathcal{A}}_{f}:=\frac{1}{|\det \mathcal{A}|}\sum_{k\in \mathbb{Z}^d}|\hat{f}(\mathcal{A}^T)^{-1}(\cdot+k)|^2\) be the periodization of \(|\hat{f}|^2\). By using \(\Phi^{\mathcal{A}}_{f}\), among other things, we characterize when the sequence \(\tau_{\mathcal{A}}(f):=\{f(\cdot-\mathcal{A}k)\}_{k\in \mathbb{Z}^d}\) is a Bessel sequence, frame of translates, Riesz basis, or orthonormal basis. And finally, we construct an example, in which \(\tau_{\mathcal{A}}(f)\) is a Parseval frame of translates, but not a Riesz sequence.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2284364131
source Ejournal Publishers (free content)
title On the semi-regular frames of translates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T10%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20semi-regular%20frames%20of%20translates&rft.jtitle=arXiv.org&rft.au=Valizadeh,%20F&rft.date=2019-08-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2284364131%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284364131&rft_id=info:pmid/&rfr_iscdi=true