Magnesium Storage Performance and Mechanism of 2D‐Ultrathin Nanosheet‐Assembled Spinel MgIn2S4 Cathode for High‐Temperature Mg Batteries
Magnesium batteries have the potential to be a next generation battery with large capability and high safety, owing to the high abundance, great volumetric energy density, and reversible dendrite‐free capability of Mg anodes. However, the lack of a stable high‐voltage electrolyte, and the sluggish M...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-09, Vol.15 (36), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 36 |
container_start_page | |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 15 |
creator | Zhang, Yong Konya, Masashi Kutsuma, Ayaka Lim, Seonghyeon Mandai, Toshihiko Munakata, Hirokazu Kanamura, Kiyoshi |
description | Magnesium batteries have the potential to be a next generation battery with large capability and high safety, owing to the high abundance, great volumetric energy density, and reversible dendrite‐free capability of Mg anodes. However, the lack of a stable high‐voltage electrolyte, and the sluggish Mg‐ion diffusion in lattices and through interfaces limit the practical uses of Mg batteries. Herein, a spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is reported and first used as a cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. The nonflammable ionic liquid electrolyte ensure the safety under high temperatures. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability (50–150 °C), ultrahigh capacity (≈500 mAh g−1 under 1.2 V vs Mg/Mg2+), fast Mg2+ diffusibility (≈2.0 × 10−8 cm2 s−1), and excellent cyclability (without capacity decay after 450 cycles). These excellent electrochemical properties are due to the fast kinetics of magnesium by the 2D nanosheets spinel structure and safe high‐temperature operation environment. From ex situ X‐ray diffraction and transmission electron microscopy measurements, a conversion reaction of the Mg2+ storage mechanism is found. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications.
A spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is first used as the cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability, ultrahigh capacity, fast Mg2+ diffusibility, and excellent cyclability. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications. |
doi_str_mv | 10.1002/smll.201902236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2284161911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284161911</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3386-2c3844ef6aaabda4d0cea1ee45f2b0c147e1134966c1528fccfdca15f038efcb3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUQBujiYi--tzEZ7BfjO0R8QOSoSbA89J1t6Nk62Y7YnjzFxh_o7_EEgxPvb05OTc5CN1SMqSEsHtfV9WQEZoQxnh0hno0onwQxSw5P82UXKIr77eEcMrEuIe-F7K04M2uxsuucbIE_A5ON66WVgGWtsALUBtpja9xozF7_P36WVedk93GWPwqbeM3AF3YTryHOq-gwMvWWKjwopxbthR4GtimAByseGbKTWBXULcQHDsHAcMPsuvAGfDX6ELLysPN_9tH6-en1XQ2SN9e5tNJOig5j6MBUzwWAnQkpcwLKQqiQFIAMdIsJ4qKMVDKRRJFio5YrJXShZJ0pAmPQauc99Hd0du65mMHvsu2zc7ZcDJjLBahVhIEfZQcqU9TwT5rnaml22eUZIfg2SF4dgqeLRdpevrxP9WAfGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284161911</pqid></control><display><type>article</type><title>Magnesium Storage Performance and Mechanism of 2D‐Ultrathin Nanosheet‐Assembled Spinel MgIn2S4 Cathode for High‐Temperature Mg Batteries</title><source>Access via Wiley Online Library</source><creator>Zhang, Yong ; Konya, Masashi ; Kutsuma, Ayaka ; Lim, Seonghyeon ; Mandai, Toshihiko ; Munakata, Hirokazu ; Kanamura, Kiyoshi</creator><creatorcontrib>Zhang, Yong ; Konya, Masashi ; Kutsuma, Ayaka ; Lim, Seonghyeon ; Mandai, Toshihiko ; Munakata, Hirokazu ; Kanamura, Kiyoshi</creatorcontrib><description>Magnesium batteries have the potential to be a next generation battery with large capability and high safety, owing to the high abundance, great volumetric energy density, and reversible dendrite‐free capability of Mg anodes. However, the lack of a stable high‐voltage electrolyte, and the sluggish Mg‐ion diffusion in lattices and through interfaces limit the practical uses of Mg batteries. Herein, a spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is reported and first used as a cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. The nonflammable ionic liquid electrolyte ensure the safety under high temperatures. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability (50–150 °C), ultrahigh capacity (≈500 mAh g−1 under 1.2 V vs Mg/Mg2+), fast Mg2+ diffusibility (≈2.0 × 10−8 cm2 s−1), and excellent cyclability (without capacity decay after 450 cycles). These excellent electrochemical properties are due to the fast kinetics of magnesium by the 2D nanosheets spinel structure and safe high‐temperature operation environment. From ex situ X‐ray diffraction and transmission electron microscopy measurements, a conversion reaction of the Mg2+ storage mechanism is found. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications.
A spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is first used as the cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability, ultrahigh capacity, fast Mg2+ diffusibility, and excellent cyclability. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201902236</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D‐ultrathin nanosheets ; Batteries ; Cathodes ; Dendritic structure ; Electrochemical analysis ; Electrode materials ; Electrolytes ; Flux density ; high temperature ; Ion diffusion ; Ionic liquids ; Lattices ; Magnesium ; magnesium batteries ; MgIn2S4 ; Nanosheets ; Nanotechnology ; Product safety ; Reaction kinetics ; Spinel</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2019-09, Vol.15 (36), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5351-9426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201902236$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201902236$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Konya, Masashi</creatorcontrib><creatorcontrib>Kutsuma, Ayaka</creatorcontrib><creatorcontrib>Lim, Seonghyeon</creatorcontrib><creatorcontrib>Mandai, Toshihiko</creatorcontrib><creatorcontrib>Munakata, Hirokazu</creatorcontrib><creatorcontrib>Kanamura, Kiyoshi</creatorcontrib><title>Magnesium Storage Performance and Mechanism of 2D‐Ultrathin Nanosheet‐Assembled Spinel MgIn2S4 Cathode for High‐Temperature Mg Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Magnesium batteries have the potential to be a next generation battery with large capability and high safety, owing to the high abundance, great volumetric energy density, and reversible dendrite‐free capability of Mg anodes. However, the lack of a stable high‐voltage electrolyte, and the sluggish Mg‐ion diffusion in lattices and through interfaces limit the practical uses of Mg batteries. Herein, a spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is reported and first used as a cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. The nonflammable ionic liquid electrolyte ensure the safety under high temperatures. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability (50–150 °C), ultrahigh capacity (≈500 mAh g−1 under 1.2 V vs Mg/Mg2+), fast Mg2+ diffusibility (≈2.0 × 10−8 cm2 s−1), and excellent cyclability (without capacity decay after 450 cycles). These excellent electrochemical properties are due to the fast kinetics of magnesium by the 2D nanosheets spinel structure and safe high‐temperature operation environment. From ex situ X‐ray diffraction and transmission electron microscopy measurements, a conversion reaction of the Mg2+ storage mechanism is found. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications.
A spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is first used as the cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability, ultrahigh capacity, fast Mg2+ diffusibility, and excellent cyclability. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications.</description><subject>2D‐ultrathin nanosheets</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Dendritic structure</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Flux density</subject><subject>high temperature</subject><subject>Ion diffusion</subject><subject>Ionic liquids</subject><subject>Lattices</subject><subject>Magnesium</subject><subject>magnesium batteries</subject><subject>MgIn2S4</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Product safety</subject><subject>Reaction kinetics</subject><subject>Spinel</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAUQBujiYi--tzEZ7BfjO0R8QOSoSbA89J1t6Nk62Y7YnjzFxh_o7_EEgxPvb05OTc5CN1SMqSEsHtfV9WQEZoQxnh0hno0onwQxSw5P82UXKIr77eEcMrEuIe-F7K04M2uxsuucbIE_A5ON66WVgGWtsALUBtpja9xozF7_P36WVedk93GWPwqbeM3AF3YTryHOq-gwMvWWKjwopxbthR4GtimAByseGbKTWBXULcQHDsHAcMPsuvAGfDX6ELLysPN_9tH6-en1XQ2SN9e5tNJOig5j6MBUzwWAnQkpcwLKQqiQFIAMdIsJ4qKMVDKRRJFio5YrJXShZJ0pAmPQauc99Hd0du65mMHvsu2zc7ZcDJjLBahVhIEfZQcqU9TwT5rnaml22eUZIfg2SF4dgqeLRdpevrxP9WAfGs</recordid><startdate>20190904</startdate><enddate>20190904</enddate><creator>Zhang, Yong</creator><creator>Konya, Masashi</creator><creator>Kutsuma, Ayaka</creator><creator>Lim, Seonghyeon</creator><creator>Mandai, Toshihiko</creator><creator>Munakata, Hirokazu</creator><creator>Kanamura, Kiyoshi</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5351-9426</orcidid></search><sort><creationdate>20190904</creationdate><title>Magnesium Storage Performance and Mechanism of 2D‐Ultrathin Nanosheet‐Assembled Spinel MgIn2S4 Cathode for High‐Temperature Mg Batteries</title><author>Zhang, Yong ; Konya, Masashi ; Kutsuma, Ayaka ; Lim, Seonghyeon ; Mandai, Toshihiko ; Munakata, Hirokazu ; Kanamura, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3386-2c3844ef6aaabda4d0cea1ee45f2b0c147e1134966c1528fccfdca15f038efcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2D‐ultrathin nanosheets</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Dendritic structure</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Flux density</topic><topic>high temperature</topic><topic>Ion diffusion</topic><topic>Ionic liquids</topic><topic>Lattices</topic><topic>Magnesium</topic><topic>magnesium batteries</topic><topic>MgIn2S4</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Product safety</topic><topic>Reaction kinetics</topic><topic>Spinel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Konya, Masashi</creatorcontrib><creatorcontrib>Kutsuma, Ayaka</creatorcontrib><creatorcontrib>Lim, Seonghyeon</creatorcontrib><creatorcontrib>Mandai, Toshihiko</creatorcontrib><creatorcontrib>Munakata, Hirokazu</creatorcontrib><creatorcontrib>Kanamura, Kiyoshi</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yong</au><au>Konya, Masashi</au><au>Kutsuma, Ayaka</au><au>Lim, Seonghyeon</au><au>Mandai, Toshihiko</au><au>Munakata, Hirokazu</au><au>Kanamura, Kiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnesium Storage Performance and Mechanism of 2D‐Ultrathin Nanosheet‐Assembled Spinel MgIn2S4 Cathode for High‐Temperature Mg Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2019-09-04</date><risdate>2019</risdate><volume>15</volume><issue>36</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Magnesium batteries have the potential to be a next generation battery with large capability and high safety, owing to the high abundance, great volumetric energy density, and reversible dendrite‐free capability of Mg anodes. However, the lack of a stable high‐voltage electrolyte, and the sluggish Mg‐ion diffusion in lattices and through interfaces limit the practical uses of Mg batteries. Herein, a spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is reported and first used as a cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. The nonflammable ionic liquid electrolyte ensure the safety under high temperatures. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability (50–150 °C), ultrahigh capacity (≈500 mAh g−1 under 1.2 V vs Mg/Mg2+), fast Mg2+ diffusibility (≈2.0 × 10−8 cm2 s−1), and excellent cyclability (without capacity decay after 450 cycles). These excellent electrochemical properties are due to the fast kinetics of magnesium by the 2D nanosheets spinel structure and safe high‐temperature operation environment. From ex situ X‐ray diffraction and transmission electron microscopy measurements, a conversion reaction of the Mg2+ storage mechanism is found. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications.
A spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is first used as the cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability, ultrahigh capacity, fast Mg2+ diffusibility, and excellent cyclability. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.201902236</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5351-9426</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2019-09, Vol.15 (36), p.n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_journals_2284161911 |
source | Access via Wiley Online Library |
subjects | 2D‐ultrathin nanosheets Batteries Cathodes Dendritic structure Electrochemical analysis Electrode materials Electrolytes Flux density high temperature Ion diffusion Ionic liquids Lattices Magnesium magnesium batteries MgIn2S4 Nanosheets Nanotechnology Product safety Reaction kinetics Spinel |
title | Magnesium Storage Performance and Mechanism of 2D‐Ultrathin Nanosheet‐Assembled Spinel MgIn2S4 Cathode for High‐Temperature Mg Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnesium%20Storage%20Performance%20and%20Mechanism%20of%202D%E2%80%90Ultrathin%20Nanosheet%E2%80%90Assembled%20Spinel%20MgIn2S4%20Cathode%20for%20High%E2%80%90Temperature%20Mg%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Yong&rft.date=2019-09-04&rft.volume=15&rft.issue=36&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201902236&rft_dat=%3Cproquest_wiley%3E2284161911%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284161911&rft_id=info:pmid/&rfr_iscdi=true |