Magnesium Storage Performance and Mechanism of 2D‐Ultrathin Nanosheet‐Assembled Spinel MgIn2S4 Cathode for High‐Temperature Mg Batteries

Magnesium batteries have the potential to be a next generation battery with large capability and high safety, owing to the high abundance, great volumetric energy density, and reversible dendrite‐free capability of Mg anodes. However, the lack of a stable high‐voltage electrolyte, and the sluggish M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-09, Vol.15 (36), p.n/a
Hauptverfasser: Zhang, Yong, Konya, Masashi, Kutsuma, Ayaka, Lim, Seonghyeon, Mandai, Toshihiko, Munakata, Hirokazu, Kanamura, Kiyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 15
creator Zhang, Yong
Konya, Masashi
Kutsuma, Ayaka
Lim, Seonghyeon
Mandai, Toshihiko
Munakata, Hirokazu
Kanamura, Kiyoshi
description Magnesium batteries have the potential to be a next generation battery with large capability and high safety, owing to the high abundance, great volumetric energy density, and reversible dendrite‐free capability of Mg anodes. However, the lack of a stable high‐voltage electrolyte, and the sluggish Mg‐ion diffusion in lattices and through interfaces limit the practical uses of Mg batteries. Herein, a spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is reported and first used as a cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. The nonflammable ionic liquid electrolyte ensure the safety under high temperatures. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability (50–150 °C), ultrahigh capacity (≈500 mAh g−1 under 1.2 V vs Mg/Mg2+), fast Mg2+ diffusibility (≈2.0 × 10−8 cm2 s−1), and excellent cyclability (without capacity decay after 450 cycles). These excellent electrochemical properties are due to the fast kinetics of magnesium by the 2D nanosheets spinel structure and safe high‐temperature operation environment. From ex situ X‐ray diffraction and transmission electron microscopy measurements, a conversion reaction of the Mg2+ storage mechanism is found. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications. A spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is first used as the cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability, ultrahigh capacity, fast Mg2+ diffusibility, and excellent cyclability. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications.
doi_str_mv 10.1002/smll.201902236
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2284161911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284161911</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3386-2c3844ef6aaabda4d0cea1ee45f2b0c147e1134966c1528fccfdca15f038efcb3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUQBujiYi--tzEZ7BfjO0R8QOSoSbA89J1t6Nk62Y7YnjzFxh_o7_EEgxPvb05OTc5CN1SMqSEsHtfV9WQEZoQxnh0hno0onwQxSw5P82UXKIr77eEcMrEuIe-F7K04M2uxsuucbIE_A5ON66WVgGWtsALUBtpja9xozF7_P36WVedk93GWPwqbeM3AF3YTryHOq-gwMvWWKjwopxbthR4GtimAByseGbKTWBXULcQHDsHAcMPsuvAGfDX6ELLysPN_9tH6-en1XQ2SN9e5tNJOig5j6MBUzwWAnQkpcwLKQqiQFIAMdIsJ4qKMVDKRRJFio5YrJXShZJ0pAmPQauc99Hd0du65mMHvsu2zc7ZcDJjLBahVhIEfZQcqU9TwT5rnaml22eUZIfg2SF4dgqeLRdpevrxP9WAfGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284161911</pqid></control><display><type>article</type><title>Magnesium Storage Performance and Mechanism of 2D‐Ultrathin Nanosheet‐Assembled Spinel MgIn2S4 Cathode for High‐Temperature Mg Batteries</title><source>Access via Wiley Online Library</source><creator>Zhang, Yong ; Konya, Masashi ; Kutsuma, Ayaka ; Lim, Seonghyeon ; Mandai, Toshihiko ; Munakata, Hirokazu ; Kanamura, Kiyoshi</creator><creatorcontrib>Zhang, Yong ; Konya, Masashi ; Kutsuma, Ayaka ; Lim, Seonghyeon ; Mandai, Toshihiko ; Munakata, Hirokazu ; Kanamura, Kiyoshi</creatorcontrib><description>Magnesium batteries have the potential to be a next generation battery with large capability and high safety, owing to the high abundance, great volumetric energy density, and reversible dendrite‐free capability of Mg anodes. However, the lack of a stable high‐voltage electrolyte, and the sluggish Mg‐ion diffusion in lattices and through interfaces limit the practical uses of Mg batteries. Herein, a spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is reported and first used as a cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. The nonflammable ionic liquid electrolyte ensure the safety under high temperatures. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability (50–150 °C), ultrahigh capacity (≈500 mAh g−1 under 1.2 V vs Mg/Mg2+), fast Mg2+ diffusibility (≈2.0 × 10−8 cm2 s−1), and excellent cyclability (without capacity decay after 450 cycles). These excellent electrochemical properties are due to the fast kinetics of magnesium by the 2D nanosheets spinel structure and safe high‐temperature operation environment. From ex situ X‐ray diffraction and transmission electron microscopy measurements, a conversion reaction of the Mg2+ storage mechanism is found. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications. A spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is first used as the cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability, ultrahigh capacity, fast Mg2+ diffusibility, and excellent cyclability. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201902236</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D‐ultrathin nanosheets ; Batteries ; Cathodes ; Dendritic structure ; Electrochemical analysis ; Electrode materials ; Electrolytes ; Flux density ; high temperature ; Ion diffusion ; Ionic liquids ; Lattices ; Magnesium ; magnesium batteries ; MgIn2S4 ; Nanosheets ; Nanotechnology ; Product safety ; Reaction kinetics ; Spinel</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2019-09, Vol.15 (36), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5351-9426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201902236$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201902236$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Konya, Masashi</creatorcontrib><creatorcontrib>Kutsuma, Ayaka</creatorcontrib><creatorcontrib>Lim, Seonghyeon</creatorcontrib><creatorcontrib>Mandai, Toshihiko</creatorcontrib><creatorcontrib>Munakata, Hirokazu</creatorcontrib><creatorcontrib>Kanamura, Kiyoshi</creatorcontrib><title>Magnesium Storage Performance and Mechanism of 2D‐Ultrathin Nanosheet‐Assembled Spinel MgIn2S4 Cathode for High‐Temperature Mg Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Magnesium batteries have the potential to be a next generation battery with large capability and high safety, owing to the high abundance, great volumetric energy density, and reversible dendrite‐free capability of Mg anodes. However, the lack of a stable high‐voltage electrolyte, and the sluggish Mg‐ion diffusion in lattices and through interfaces limit the practical uses of Mg batteries. Herein, a spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is reported and first used as a cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. The nonflammable ionic liquid electrolyte ensure the safety under high temperatures. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability (50–150 °C), ultrahigh capacity (≈500 mAh g−1 under 1.2 V vs Mg/Mg2+), fast Mg2+ diffusibility (≈2.0 × 10−8 cm2 s−1), and excellent cyclability (without capacity decay after 450 cycles). These excellent electrochemical properties are due to the fast kinetics of magnesium by the 2D nanosheets spinel structure and safe high‐temperature operation environment. From ex situ X‐ray diffraction and transmission electron microscopy measurements, a conversion reaction of the Mg2+ storage mechanism is found. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications. A spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is first used as the cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability, ultrahigh capacity, fast Mg2+ diffusibility, and excellent cyclability. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications.</description><subject>2D‐ultrathin nanosheets</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Dendritic structure</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Flux density</subject><subject>high temperature</subject><subject>Ion diffusion</subject><subject>Ionic liquids</subject><subject>Lattices</subject><subject>Magnesium</subject><subject>magnesium batteries</subject><subject>MgIn2S4</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Product safety</subject><subject>Reaction kinetics</subject><subject>Spinel</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAUQBujiYi--tzEZ7BfjO0R8QOSoSbA89J1t6Nk62Y7YnjzFxh_o7_EEgxPvb05OTc5CN1SMqSEsHtfV9WQEZoQxnh0hno0onwQxSw5P82UXKIr77eEcMrEuIe-F7K04M2uxsuucbIE_A5ON66WVgGWtsALUBtpja9xozF7_P36WVedk93GWPwqbeM3AF3YTryHOq-gwMvWWKjwopxbthR4GtimAByseGbKTWBXULcQHDsHAcMPsuvAGfDX6ELLysPN_9tH6-en1XQ2SN9e5tNJOig5j6MBUzwWAnQkpcwLKQqiQFIAMdIsJ4qKMVDKRRJFio5YrJXShZJ0pAmPQauc99Hd0du65mMHvsu2zc7ZcDJjLBahVhIEfZQcqU9TwT5rnaml22eUZIfg2SF4dgqeLRdpevrxP9WAfGs</recordid><startdate>20190904</startdate><enddate>20190904</enddate><creator>Zhang, Yong</creator><creator>Konya, Masashi</creator><creator>Kutsuma, Ayaka</creator><creator>Lim, Seonghyeon</creator><creator>Mandai, Toshihiko</creator><creator>Munakata, Hirokazu</creator><creator>Kanamura, Kiyoshi</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5351-9426</orcidid></search><sort><creationdate>20190904</creationdate><title>Magnesium Storage Performance and Mechanism of 2D‐Ultrathin Nanosheet‐Assembled Spinel MgIn2S4 Cathode for High‐Temperature Mg Batteries</title><author>Zhang, Yong ; Konya, Masashi ; Kutsuma, Ayaka ; Lim, Seonghyeon ; Mandai, Toshihiko ; Munakata, Hirokazu ; Kanamura, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3386-2c3844ef6aaabda4d0cea1ee45f2b0c147e1134966c1528fccfdca15f038efcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2D‐ultrathin nanosheets</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Dendritic structure</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Flux density</topic><topic>high temperature</topic><topic>Ion diffusion</topic><topic>Ionic liquids</topic><topic>Lattices</topic><topic>Magnesium</topic><topic>magnesium batteries</topic><topic>MgIn2S4</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Product safety</topic><topic>Reaction kinetics</topic><topic>Spinel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Konya, Masashi</creatorcontrib><creatorcontrib>Kutsuma, Ayaka</creatorcontrib><creatorcontrib>Lim, Seonghyeon</creatorcontrib><creatorcontrib>Mandai, Toshihiko</creatorcontrib><creatorcontrib>Munakata, Hirokazu</creatorcontrib><creatorcontrib>Kanamura, Kiyoshi</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yong</au><au>Konya, Masashi</au><au>Kutsuma, Ayaka</au><au>Lim, Seonghyeon</au><au>Mandai, Toshihiko</au><au>Munakata, Hirokazu</au><au>Kanamura, Kiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnesium Storage Performance and Mechanism of 2D‐Ultrathin Nanosheet‐Assembled Spinel MgIn2S4 Cathode for High‐Temperature Mg Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2019-09-04</date><risdate>2019</risdate><volume>15</volume><issue>36</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Magnesium batteries have the potential to be a next generation battery with large capability and high safety, owing to the high abundance, great volumetric energy density, and reversible dendrite‐free capability of Mg anodes. However, the lack of a stable high‐voltage electrolyte, and the sluggish Mg‐ion diffusion in lattices and through interfaces limit the practical uses of Mg batteries. Herein, a spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is reported and first used as a cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. The nonflammable ionic liquid electrolyte ensure the safety under high temperatures. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability (50–150 °C), ultrahigh capacity (≈500 mAh g−1 under 1.2 V vs Mg/Mg2+), fast Mg2+ diffusibility (≈2.0 × 10−8 cm2 s−1), and excellent cyclability (without capacity decay after 450 cycles). These excellent electrochemical properties are due to the fast kinetics of magnesium by the 2D nanosheets spinel structure and safe high‐temperature operation environment. From ex situ X‐ray diffraction and transmission electron microscopy measurements, a conversion reaction of the Mg2+ storage mechanism is found. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications. A spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is first used as the cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability, ultrahigh capacity, fast Mg2+ diffusibility, and excellent cyclability. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.201902236</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5351-9426</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2019-09, Vol.15 (36), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2284161911
source Access via Wiley Online Library
subjects 2D‐ultrathin nanosheets
Batteries
Cathodes
Dendritic structure
Electrochemical analysis
Electrode materials
Electrolytes
Flux density
high temperature
Ion diffusion
Ionic liquids
Lattices
Magnesium
magnesium batteries
MgIn2S4
Nanosheets
Nanotechnology
Product safety
Reaction kinetics
Spinel
title Magnesium Storage Performance and Mechanism of 2D‐Ultrathin Nanosheet‐Assembled Spinel MgIn2S4 Cathode for High‐Temperature Mg Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnesium%20Storage%20Performance%20and%20Mechanism%20of%202D%E2%80%90Ultrathin%20Nanosheet%E2%80%90Assembled%20Spinel%20MgIn2S4%20Cathode%20for%20High%E2%80%90Temperature%20Mg%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Yong&rft.date=2019-09-04&rft.volume=15&rft.issue=36&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201902236&rft_dat=%3Cproquest_wiley%3E2284161911%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284161911&rft_id=info:pmid/&rfr_iscdi=true