On the Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields Near the Upper Boundaries of Spectral Clusters

The problem of the Zeemann-Stark effect for the hydrogen atom in electromagnetic fields is considered using the irreducible representations of the Karasev-Novikova algebra with quadratic commutation relations. An asymptotics of the series of eigenvalues and the asymptotic eigenfunctions are obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of mathematical physics 2019-07, Vol.26 (3), p.391-400
1. Verfasser: Pereskokov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 3
container_start_page 391
container_title Russian journal of mathematical physics
container_volume 26
creator Pereskokov, A. V.
description The problem of the Zeemann-Stark effect for the hydrogen atom in electromagnetic fields is considered using the irreducible representations of the Karasev-Novikova algebra with quadratic commutation relations. An asymptotics of the series of eigenvalues and the asymptotic eigenfunctions are obtained near the upper boundaries of resonance spectral clusters which are formed near the energy levels of an unperturbed hydrogen atom.
doi_str_mv 10.1134/S1061920819030130
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2284161421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284161421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4a16271bbeebfc34c24ac486e4dfebb8a9edee01e771603b3cfbe2b64fc9ea5b3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxiMEEqXwAGyWmAO-2HGTsVQtRQI6lM6R7VzSVGkcbGfoY_DGpA2IATHdv-_7ne6C4BboPQDjD2ugAtKIJpBSRoHRs2AEcRyHQrDkvM_7cXicXwZXzu0oFTShfBR8rhrit0im7rBvvfGVdsQUp9a6Re1tt_-pl4fcmhIbMvVmT6qGrKzfmtI0sibz-qitNJFNTl5l2WBPIosK69yRN5T2RNi0LVryaLoml7bC06ZhS4-Y1Z3zaN11cFHI2uHNdxwHm8X8fbYMX1ZPz7PpS6gZCB9yCSKagFKIqtCM64hLzROBPC9QqUSmmCNSwMkEBGWK6UJhpAQvdIoyVmwc3A3c1pqPDp3Pdqaz_TEui6KEgwAeQa-CQaWtcc5ikbW22kt7yIBmx89nfz7fe6LB43ptU6L9Jf9v-gJuOIe3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284161421</pqid></control><display><type>article</type><title>On the Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields Near the Upper Boundaries of Spectral Clusters</title><source>Springer Nature - Complete Springer Journals</source><creator>Pereskokov, A. V.</creator><creatorcontrib>Pereskokov, A. V.</creatorcontrib><description>The problem of the Zeemann-Stark effect for the hydrogen atom in electromagnetic fields is considered using the irreducible representations of the Karasev-Novikova algebra with quadratic commutation relations. An asymptotics of the series of eigenvalues and the asymptotic eigenfunctions are obtained near the upper boundaries of resonance spectral clusters which are formed near the energy levels of an unperturbed hydrogen atom.</description><identifier>ISSN: 1061-9208</identifier><identifier>EISSN: 1555-6638</identifier><identifier>DOI: 10.1134/S1061920819030130</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic properties ; Boundaries ; Clusters ; Commutation ; Eigenvalues ; Eigenvectors ; Electromagnetic fields ; Energy levels ; Hydrogen ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Stark effect ; Theoretical</subject><ispartof>Russian journal of mathematical physics, 2019-07, Vol.26 (3), p.391-400</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4a16271bbeebfc34c24ac486e4dfebb8a9edee01e771603b3cfbe2b64fc9ea5b3</citedby><cites>FETCH-LOGICAL-c316t-4a16271bbeebfc34c24ac486e4dfebb8a9edee01e771603b3cfbe2b64fc9ea5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1061920819030130$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1061920819030130$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pereskokov, A. V.</creatorcontrib><title>On the Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields Near the Upper Boundaries of Spectral Clusters</title><title>Russian journal of mathematical physics</title><addtitle>Russ. J. Math. Phys</addtitle><description>The problem of the Zeemann-Stark effect for the hydrogen atom in electromagnetic fields is considered using the irreducible representations of the Karasev-Novikova algebra with quadratic commutation relations. An asymptotics of the series of eigenvalues and the asymptotic eigenfunctions are obtained near the upper boundaries of resonance spectral clusters which are formed near the energy levels of an unperturbed hydrogen atom.</description><subject>Asymptotic properties</subject><subject>Boundaries</subject><subject>Clusters</subject><subject>Commutation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Electromagnetic fields</subject><subject>Energy levels</subject><subject>Hydrogen</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stark effect</subject><subject>Theoretical</subject><issn>1061-9208</issn><issn>1555-6638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQxiMEEqXwAGyWmAO-2HGTsVQtRQI6lM6R7VzSVGkcbGfoY_DGpA2IATHdv-_7ne6C4BboPQDjD2ugAtKIJpBSRoHRs2AEcRyHQrDkvM_7cXicXwZXzu0oFTShfBR8rhrit0im7rBvvfGVdsQUp9a6Re1tt_-pl4fcmhIbMvVmT6qGrKzfmtI0sibz-qitNJFNTl5l2WBPIosK69yRN5T2RNi0LVryaLoml7bC06ZhS4-Y1Z3zaN11cFHI2uHNdxwHm8X8fbYMX1ZPz7PpS6gZCB9yCSKagFKIqtCM64hLzROBPC9QqUSmmCNSwMkEBGWK6UJhpAQvdIoyVmwc3A3c1pqPDp3Pdqaz_TEui6KEgwAeQa-CQaWtcc5ikbW22kt7yIBmx89nfz7fe6LB43ptU6L9Jf9v-gJuOIe3</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Pereskokov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>On the Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields Near the Upper Boundaries of Spectral Clusters</title><author>Pereskokov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4a16271bbeebfc34c24ac486e4dfebb8a9edee01e771603b3cfbe2b64fc9ea5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic properties</topic><topic>Boundaries</topic><topic>Clusters</topic><topic>Commutation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Electromagnetic fields</topic><topic>Energy levels</topic><topic>Hydrogen</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stark effect</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereskokov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereskokov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields Near the Upper Boundaries of Spectral Clusters</atitle><jtitle>Russian journal of mathematical physics</jtitle><stitle>Russ. J. Math. Phys</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>26</volume><issue>3</issue><spage>391</spage><epage>400</epage><pages>391-400</pages><issn>1061-9208</issn><eissn>1555-6638</eissn><abstract>The problem of the Zeemann-Stark effect for the hydrogen atom in electromagnetic fields is considered using the irreducible representations of the Karasev-Novikova algebra with quadratic commutation relations. An asymptotics of the series of eigenvalues and the asymptotic eigenfunctions are obtained near the upper boundaries of resonance spectral clusters which are formed near the energy levels of an unperturbed hydrogen atom.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061920819030130</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-9208
ispartof Russian journal of mathematical physics, 2019-07, Vol.26 (3), p.391-400
issn 1061-9208
1555-6638
language eng
recordid cdi_proquest_journals_2284161421
source Springer Nature - Complete Springer Journals
subjects Asymptotic properties
Boundaries
Clusters
Commutation
Eigenvalues
Eigenvectors
Electromagnetic fields
Energy levels
Hydrogen
Mathematical and Computational Physics
Physics
Physics and Astronomy
Stark effect
Theoretical
title On the Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields Near the Upper Boundaries of Spectral Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Asymptotics%20of%20the%20Spectrum%20of%20the%20Hydrogen%20Atom%20in%20Orthogonal%20Electric%20and%20Magnetic%20Fields%20Near%20the%20Upper%20Boundaries%20of%20Spectral%20Clusters&rft.jtitle=Russian%20journal%20of%20mathematical%20physics&rft.au=Pereskokov,%20A.%20V.&rft.date=2019-07-01&rft.volume=26&rft.issue=3&rft.spage=391&rft.epage=400&rft.pages=391-400&rft.issn=1061-9208&rft.eissn=1555-6638&rft_id=info:doi/10.1134/S1061920819030130&rft_dat=%3Cproquest_cross%3E2284161421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284161421&rft_id=info:pmid/&rfr_iscdi=true