On the Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields Near the Upper Boundaries of Spectral Clusters
The problem of the Zeemann-Stark effect for the hydrogen atom in electromagnetic fields is considered using the irreducible representations of the Karasev-Novikova algebra with quadratic commutation relations. An asymptotics of the series of eigenvalues and the asymptotic eigenfunctions are obtained...
Gespeichert in:
Veröffentlicht in: | Russian journal of mathematical physics 2019-07, Vol.26 (3), p.391-400 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 400 |
---|---|
container_issue | 3 |
container_start_page | 391 |
container_title | Russian journal of mathematical physics |
container_volume | 26 |
creator | Pereskokov, A. V. |
description | The problem of the Zeemann-Stark effect for the hydrogen atom in electromagnetic fields is considered using the irreducible representations of the Karasev-Novikova algebra with quadratic commutation relations. An asymptotics of the series of eigenvalues and the asymptotic eigenfunctions are obtained near the upper boundaries of resonance spectral clusters which are formed near the energy levels of an unperturbed hydrogen atom. |
doi_str_mv | 10.1134/S1061920819030130 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2284161421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284161421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4a16271bbeebfc34c24ac486e4dfebb8a9edee01e771603b3cfbe2b64fc9ea5b3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxiMEEqXwAGyWmAO-2HGTsVQtRQI6lM6R7VzSVGkcbGfoY_DGpA2IATHdv-_7ne6C4BboPQDjD2ugAtKIJpBSRoHRs2AEcRyHQrDkvM_7cXicXwZXzu0oFTShfBR8rhrit0im7rBvvfGVdsQUp9a6Re1tt_-pl4fcmhIbMvVmT6qGrKzfmtI0sibz-qitNJFNTl5l2WBPIosK69yRN5T2RNi0LVryaLoml7bC06ZhS4-Y1Z3zaN11cFHI2uHNdxwHm8X8fbYMX1ZPz7PpS6gZCB9yCSKagFKIqtCM64hLzROBPC9QqUSmmCNSwMkEBGWK6UJhpAQvdIoyVmwc3A3c1pqPDp3Pdqaz_TEui6KEgwAeQa-CQaWtcc5ikbW22kt7yIBmx89nfz7fe6LB43ptU6L9Jf9v-gJuOIe3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284161421</pqid></control><display><type>article</type><title>On the Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields Near the Upper Boundaries of Spectral Clusters</title><source>Springer Nature - Complete Springer Journals</source><creator>Pereskokov, A. V.</creator><creatorcontrib>Pereskokov, A. V.</creatorcontrib><description>The problem of the Zeemann-Stark effect for the hydrogen atom in electromagnetic fields is considered using the irreducible representations of the Karasev-Novikova algebra with quadratic commutation relations. An asymptotics of the series of eigenvalues and the asymptotic eigenfunctions are obtained near the upper boundaries of resonance spectral clusters which are formed near the energy levels of an unperturbed hydrogen atom.</description><identifier>ISSN: 1061-9208</identifier><identifier>EISSN: 1555-6638</identifier><identifier>DOI: 10.1134/S1061920819030130</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic properties ; Boundaries ; Clusters ; Commutation ; Eigenvalues ; Eigenvectors ; Electromagnetic fields ; Energy levels ; Hydrogen ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Stark effect ; Theoretical</subject><ispartof>Russian journal of mathematical physics, 2019-07, Vol.26 (3), p.391-400</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4a16271bbeebfc34c24ac486e4dfebb8a9edee01e771603b3cfbe2b64fc9ea5b3</citedby><cites>FETCH-LOGICAL-c316t-4a16271bbeebfc34c24ac486e4dfebb8a9edee01e771603b3cfbe2b64fc9ea5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1061920819030130$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1061920819030130$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pereskokov, A. V.</creatorcontrib><title>On the Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields Near the Upper Boundaries of Spectral Clusters</title><title>Russian journal of mathematical physics</title><addtitle>Russ. J. Math. Phys</addtitle><description>The problem of the Zeemann-Stark effect for the hydrogen atom in electromagnetic fields is considered using the irreducible representations of the Karasev-Novikova algebra with quadratic commutation relations. An asymptotics of the series of eigenvalues and the asymptotic eigenfunctions are obtained near the upper boundaries of resonance spectral clusters which are formed near the energy levels of an unperturbed hydrogen atom.</description><subject>Asymptotic properties</subject><subject>Boundaries</subject><subject>Clusters</subject><subject>Commutation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Electromagnetic fields</subject><subject>Energy levels</subject><subject>Hydrogen</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stark effect</subject><subject>Theoretical</subject><issn>1061-9208</issn><issn>1555-6638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQxiMEEqXwAGyWmAO-2HGTsVQtRQI6lM6R7VzSVGkcbGfoY_DGpA2IATHdv-_7ne6C4BboPQDjD2ugAtKIJpBSRoHRs2AEcRyHQrDkvM_7cXicXwZXzu0oFTShfBR8rhrit0im7rBvvfGVdsQUp9a6Re1tt_-pl4fcmhIbMvVmT6qGrKzfmtI0sibz-qitNJFNTl5l2WBPIosK69yRN5T2RNi0LVryaLoml7bC06ZhS4-Y1Z3zaN11cFHI2uHNdxwHm8X8fbYMX1ZPz7PpS6gZCB9yCSKagFKIqtCM64hLzROBPC9QqUSmmCNSwMkEBGWK6UJhpAQvdIoyVmwc3A3c1pqPDp3Pdqaz_TEui6KEgwAeQa-CQaWtcc5ikbW22kt7yIBmx89nfz7fe6LB43ptU6L9Jf9v-gJuOIe3</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Pereskokov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>On the Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields Near the Upper Boundaries of Spectral Clusters</title><author>Pereskokov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4a16271bbeebfc34c24ac486e4dfebb8a9edee01e771603b3cfbe2b64fc9ea5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic properties</topic><topic>Boundaries</topic><topic>Clusters</topic><topic>Commutation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Electromagnetic fields</topic><topic>Energy levels</topic><topic>Hydrogen</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stark effect</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereskokov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereskokov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields Near the Upper Boundaries of Spectral Clusters</atitle><jtitle>Russian journal of mathematical physics</jtitle><stitle>Russ. J. Math. Phys</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>26</volume><issue>3</issue><spage>391</spage><epage>400</epage><pages>391-400</pages><issn>1061-9208</issn><eissn>1555-6638</eissn><abstract>The problem of the Zeemann-Stark effect for the hydrogen atom in electromagnetic fields is considered using the irreducible representations of the Karasev-Novikova algebra with quadratic commutation relations. An asymptotics of the series of eigenvalues and the asymptotic eigenfunctions are obtained near the upper boundaries of resonance spectral clusters which are formed near the energy levels of an unperturbed hydrogen atom.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061920819030130</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-9208 |
ispartof | Russian journal of mathematical physics, 2019-07, Vol.26 (3), p.391-400 |
issn | 1061-9208 1555-6638 |
language | eng |
recordid | cdi_proquest_journals_2284161421 |
source | Springer Nature - Complete Springer Journals |
subjects | Asymptotic properties Boundaries Clusters Commutation Eigenvalues Eigenvectors Electromagnetic fields Energy levels Hydrogen Mathematical and Computational Physics Physics Physics and Astronomy Stark effect Theoretical |
title | On the Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields Near the Upper Boundaries of Spectral Clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Asymptotics%20of%20the%20Spectrum%20of%20the%20Hydrogen%20Atom%20in%20Orthogonal%20Electric%20and%20Magnetic%20Fields%20Near%20the%20Upper%20Boundaries%20of%20Spectral%20Clusters&rft.jtitle=Russian%20journal%20of%20mathematical%20physics&rft.au=Pereskokov,%20A.%20V.&rft.date=2019-07-01&rft.volume=26&rft.issue=3&rft.spage=391&rft.epage=400&rft.pages=391-400&rft.issn=1061-9208&rft.eissn=1555-6638&rft_id=info:doi/10.1134/S1061920819030130&rft_dat=%3Cproquest_cross%3E2284161421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284161421&rft_id=info:pmid/&rfr_iscdi=true |