Small area estimation for unemployment using latent Markov models

In Italy, the Labor Force Survey (LFS) is conducted quarterly by the National Statistical Institute (ISTAT) to produce estimates of the labor force status of the population at different geographical levels. In particular, ISTAT provides LFS estimates of employed and unemployed counts for local Labor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Survey methodology 2018-12, Vol.44 (2)
Hauptverfasser: Bertarelli, Gaia, Ranalli, M Giovanna, Bartolucci, Francesco, D'Alò, Michele, Solari, Fabrizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Survey methodology
container_volume 44
creator Bertarelli, Gaia
Ranalli, M Giovanna
Bartolucci, Francesco
D'Alò, Michele
Solari, Fabrizio
description In Italy, the Labor Force Survey (LFS) is conducted quarterly by the National Statistical Institute (ISTAT) to produce estimates of the labor force status of the population at different geographical levels. In particular, ISTAT provides LFS estimates of employed and unemployed counts for local Labor Market Areas (LMAs). LMAs are 611 sub-regional clusters of municipalities and are unplanned domains for which direct estimates have overly large sampling errors. This implies the need of Small Area Estimation (SAE) methods. In this paper we develop a new area level SAE method that uses a Latent Markov Model (LMM) as linking model. In LMMs, the characteristic of interest, and its evolution in time, is represented by a latent process that follows a Markov chain, usually of first order. Therefore, areas are allowed to change their latent state across time. The proposed model is applied to quarterly data from the LFS for the period 2004 to 2014 and fitted within a hierarchical Bayesian framework using a data augmentation Gibbs sampler. Estimates are compared with those obtained by the classical Fay-Herriot model, by a time-series area level SAE model, and on the basis of data coming from the 2011 Population Census.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2283954033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283954033</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-5bea1d6ac68600e1cc55ec0056553e31aba6f30fe41d8470d2cca230faeefb483</originalsourceid><addsrcrecordid>eNotjktLxDAUhYMoWGf8DwHXgZtXp10Ogy8YcaGzHm7TW-mYNjVJBf-9HXR1OGfxne-CFdLUSkCt5CUrYCONADD2mt2kdAKwJRhdsO3bgN5zjIScUu4HzH0YeRcin0caJh9-Bhozn1M_fnCP-VxeMH6Gbz6Elnxas6sOfaLb_1yxw8P9--5J7F8fn3fbvZhkpbOwDaFsS3RlVQKQdM5acmcPazVpiQ2WnYaOjGwrs4FWOYdqGZCoa0ylV-zujzvF8DUvrsdTmOO4XB6VqnRtDWitfwG01EfN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283954033</pqid></control><display><type>article</type><title>Small area estimation for unemployment using latent Markov models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bertarelli, Gaia ; Ranalli, M Giovanna ; Bartolucci, Francesco ; D'Alò, Michele ; Solari, Fabrizio</creator><creatorcontrib>Bertarelli, Gaia ; Ranalli, M Giovanna ; Bartolucci, Francesco ; D'Alò, Michele ; Solari, Fabrizio</creatorcontrib><description>In Italy, the Labor Force Survey (LFS) is conducted quarterly by the National Statistical Institute (ISTAT) to produce estimates of the labor force status of the population at different geographical levels. In particular, ISTAT provides LFS estimates of employed and unemployed counts for local Labor Market Areas (LMAs). LMAs are 611 sub-regional clusters of municipalities and are unplanned domains for which direct estimates have overly large sampling errors. This implies the need of Small Area Estimation (SAE) methods. In this paper we develop a new area level SAE method that uses a Latent Markov Model (LMM) as linking model. In LMMs, the characteristic of interest, and its evolution in time, is represented by a latent process that follows a Markov chain, usually of first order. Therefore, areas are allowed to change their latent state across time. The proposed model is applied to quarterly data from the LFS for the period 2004 to 2014 and fitted within a hierarchical Bayesian framework using a data augmentation Gibbs sampler. Estimates are compared with those obtained by the classical Fay-Herriot model, by a time-series area level SAE model, and on the basis of data coming from the 2011 Population Census.</description><identifier>ISSN: 0714-0045</identifier><identifier>EISSN: 1492-0921</identifier><language>eng</language><publisher>Ottawa: Statistics Canada, Operations and Integration Division</publisher><subject>Bayesian analysis ; Censuses ; Labor force ; Labor market ; Sampling ; Sampling error ; Unemployed people ; Unemployment</subject><ispartof>Survey methodology, 2018-12, Vol.44 (2)</ispartof><rights>Copyright Statistics Canada, Operations and Integration Division Dec 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Bertarelli, Gaia</creatorcontrib><creatorcontrib>Ranalli, M Giovanna</creatorcontrib><creatorcontrib>Bartolucci, Francesco</creatorcontrib><creatorcontrib>D'Alò, Michele</creatorcontrib><creatorcontrib>Solari, Fabrizio</creatorcontrib><title>Small area estimation for unemployment using latent Markov models</title><title>Survey methodology</title><description>In Italy, the Labor Force Survey (LFS) is conducted quarterly by the National Statistical Institute (ISTAT) to produce estimates of the labor force status of the population at different geographical levels. In particular, ISTAT provides LFS estimates of employed and unemployed counts for local Labor Market Areas (LMAs). LMAs are 611 sub-regional clusters of municipalities and are unplanned domains for which direct estimates have overly large sampling errors. This implies the need of Small Area Estimation (SAE) methods. In this paper we develop a new area level SAE method that uses a Latent Markov Model (LMM) as linking model. In LMMs, the characteristic of interest, and its evolution in time, is represented by a latent process that follows a Markov chain, usually of first order. Therefore, areas are allowed to change their latent state across time. The proposed model is applied to quarterly data from the LFS for the period 2004 to 2014 and fitted within a hierarchical Bayesian framework using a data augmentation Gibbs sampler. Estimates are compared with those obtained by the classical Fay-Herriot model, by a time-series area level SAE model, and on the basis of data coming from the 2011 Population Census.</description><subject>Bayesian analysis</subject><subject>Censuses</subject><subject>Labor force</subject><subject>Labor market</subject><subject>Sampling</subject><subject>Sampling error</subject><subject>Unemployed people</subject><subject>Unemployment</subject><issn>0714-0045</issn><issn>1492-0921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotjktLxDAUhYMoWGf8DwHXgZtXp10Ogy8YcaGzHm7TW-mYNjVJBf-9HXR1OGfxne-CFdLUSkCt5CUrYCONADD2mt2kdAKwJRhdsO3bgN5zjIScUu4HzH0YeRcin0caJh9-Bhozn1M_fnCP-VxeMH6Gbz6Elnxas6sOfaLb_1yxw8P9--5J7F8fn3fbvZhkpbOwDaFsS3RlVQKQdM5acmcPazVpiQ2WnYaOjGwrs4FWOYdqGZCoa0ylV-zujzvF8DUvrsdTmOO4XB6VqnRtDWitfwG01EfN</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Bertarelli, Gaia</creator><creator>Ranalli, M Giovanna</creator><creator>Bartolucci, Francesco</creator><creator>D'Alò, Michele</creator><creator>Solari, Fabrizio</creator><general>Statistics Canada, Operations and Integration Division</general><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20181201</creationdate><title>Small area estimation for unemployment using latent Markov models</title><author>Bertarelli, Gaia ; Ranalli, M Giovanna ; Bartolucci, Francesco ; D'Alò, Michele ; Solari, Fabrizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-5bea1d6ac68600e1cc55ec0056553e31aba6f30fe41d8470d2cca230faeefb483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Censuses</topic><topic>Labor force</topic><topic>Labor market</topic><topic>Sampling</topic><topic>Sampling error</topic><topic>Unemployed people</topic><topic>Unemployment</topic><toplevel>online_resources</toplevel><creatorcontrib>Bertarelli, Gaia</creatorcontrib><creatorcontrib>Ranalli, M Giovanna</creatorcontrib><creatorcontrib>Bartolucci, Francesco</creatorcontrib><creatorcontrib>D'Alò, Michele</creatorcontrib><creatorcontrib>Solari, Fabrizio</creatorcontrib><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Survey methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertarelli, Gaia</au><au>Ranalli, M Giovanna</au><au>Bartolucci, Francesco</au><au>D'Alò, Michele</au><au>Solari, Fabrizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small area estimation for unemployment using latent Markov models</atitle><jtitle>Survey methodology</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>44</volume><issue>2</issue><issn>0714-0045</issn><eissn>1492-0921</eissn><abstract>In Italy, the Labor Force Survey (LFS) is conducted quarterly by the National Statistical Institute (ISTAT) to produce estimates of the labor force status of the population at different geographical levels. In particular, ISTAT provides LFS estimates of employed and unemployed counts for local Labor Market Areas (LMAs). LMAs are 611 sub-regional clusters of municipalities and are unplanned domains for which direct estimates have overly large sampling errors. This implies the need of Small Area Estimation (SAE) methods. In this paper we develop a new area level SAE method that uses a Latent Markov Model (LMM) as linking model. In LMMs, the characteristic of interest, and its evolution in time, is represented by a latent process that follows a Markov chain, usually of first order. Therefore, areas are allowed to change their latent state across time. The proposed model is applied to quarterly data from the LFS for the period 2004 to 2014 and fitted within a hierarchical Bayesian framework using a data augmentation Gibbs sampler. Estimates are compared with those obtained by the classical Fay-Herriot model, by a time-series area level SAE model, and on the basis of data coming from the 2011 Population Census.</abstract><cop>Ottawa</cop><pub>Statistics Canada, Operations and Integration Division</pub></addata></record>
fulltext fulltext
identifier ISSN: 0714-0045
ispartof Survey methodology, 2018-12, Vol.44 (2)
issn 0714-0045
1492-0921
language eng
recordid cdi_proquest_journals_2283954033
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bayesian analysis
Censuses
Labor force
Labor market
Sampling
Sampling error
Unemployed people
Unemployment
title Small area estimation for unemployment using latent Markov models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20area%20estimation%20for%20unemployment%20using%20latent%20Markov%20models&rft.jtitle=Survey%20methodology&rft.au=Bertarelli,%20Gaia&rft.date=2018-12-01&rft.volume=44&rft.issue=2&rft.issn=0714-0045&rft.eissn=1492-0921&rft_id=info:doi/&rft_dat=%3Cproquest%3E2283954033%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283954033&rft_id=info:pmid/&rfr_iscdi=true