FINITELY RAMIFIED GRAPH-DIRECTED FRACTALS, SPECTRAL ASYMPTOTICS AND THE MULTIDIMENSIONAL RENEWAL THEOREM

We consider the class of graph-directed constructions which are connected and have the property of finite ramification. By assuming the existence of a fixed point for a certain renormalization map, it is possible to construct a Laplace operator on fractals in this class via their Dirichlet forms. Ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2003-02, Vol.46 (1), p.1-34
Hauptverfasser: Hambly, B. M., Nyberg, S. O. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 1
container_title Proceedings of the Edinburgh Mathematical Society
container_volume 46
creator Hambly, B. M.
Nyberg, S. O. G.
description We consider the class of graph-directed constructions which are connected and have the property of finite ramification. By assuming the existence of a fixed point for a certain renormalization map, it is possible to construct a Laplace operator on fractals in this class via their Dirichlet forms. Our main aim is to consider the eigenvalues of the Laplace operator and provide a formula for the spectral dimension, the exponent determining the power-law scaling in the eigenvalue counting function, and establish generic constancy for the counting-function asymptotics. In order to do this we prove an extension of the multidimensional renewal theorem. As a result we show that it is possible for the eigenvalue counting function for fractals to require a logarithmic correction to the usual power-law growth. AMS 2000 Mathematics subject classification: Primary 35P20; 58J50. Secondary 28A80; 60K05; 31C25
doi_str_mv 10.1017/S0013091500000730
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_228368424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0013091500000730</cupid><sourcerecordid>1401847201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-404fcf212903a4c19fc90a2dbf4e999138fc881f03f4208fe567de0a8d908dc13</originalsourceid><addsrcrecordid>eNp1kF1PgzAUhhujiXP6A7wjXou2tEB7SViBKh8TWMyuGgZUNz82YUv031uyRS-M5-bk9H3e8zYHgEsEbxBE7m0BIcKQIRsO5WJ4BEaIOMTEFLNjMBpkc9BPwVnfrwbGtdEIPAciFSWP50buJSIQfGKEuTeNzInIuV_qMcg9v_Ti4toopvol92LDK-bJtMxK4ReGl06MMuJGMotLMREJTwuRpRrKecofdddilvPkHJyo6rVvLw59DGYBL_3IjLNQ-F5s1jZkW5NAomplIYtBXJEaMVUzWFnNQpGWMYYwVTWlSEGsiAWpam3HbVpY0YZB2tQIj8HVfu-mW3_s2n4rV-td964jpWVR7FBiEQ2hPVR3677vWiU33fKt6r4kgnK4p_xzT-0x955lv20_fwxV9yIdF7u2dMIHGVn3d76DkAw1jw8Z1duiWzZP7e9P_k_5Bq36fCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228368424</pqid></control><display><type>article</type><title>FINITELY RAMIFIED GRAPH-DIRECTED FRACTALS, SPECTRAL ASYMPTOTICS AND THE MULTIDIMENSIONAL RENEWAL THEOREM</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge University Press Journals Complete</source><creator>Hambly, B. M. ; Nyberg, S. O. G.</creator><creatorcontrib>Hambly, B. M. ; Nyberg, S. O. G.</creatorcontrib><description>We consider the class of graph-directed constructions which are connected and have the property of finite ramification. By assuming the existence of a fixed point for a certain renormalization map, it is possible to construct a Laplace operator on fractals in this class via their Dirichlet forms. Our main aim is to consider the eigenvalues of the Laplace operator and provide a formula for the spectral dimension, the exponent determining the power-law scaling in the eigenvalue counting function, and establish generic constancy for the counting-function asymptotics. In order to do this we prove an extension of the multidimensional renewal theorem. As a result we show that it is possible for the eigenvalue counting function for fractals to require a logarithmic correction to the usual power-law growth. AMS 2000 Mathematics subject classification: Primary 35P20; 58J50. Secondary 28A80; 60K05; 31C25</description><identifier>ISSN: 0013-0915</identifier><identifier>EISSN: 1464-3839</identifier><identifier>DOI: 10.1017/S0013091500000730</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>counting-function asymptotics ; Dirichlet form ; fractal ; renewal theory</subject><ispartof>Proceedings of the Edinburgh Mathematical Society, 2003-02, Vol.46 (1), p.1-34</ispartof><rights>Copyright © Edinburgh Mathematical Society 2003</rights><rights>2003 Edinburgh Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-404fcf212903a4c19fc90a2dbf4e999138fc881f03f4208fe567de0a8d908dc13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0013091500000730/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Hambly, B. M.</creatorcontrib><creatorcontrib>Nyberg, S. O. G.</creatorcontrib><title>FINITELY RAMIFIED GRAPH-DIRECTED FRACTALS, SPECTRAL ASYMPTOTICS AND THE MULTIDIMENSIONAL RENEWAL THEOREM</title><title>Proceedings of the Edinburgh Mathematical Society</title><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><description>We consider the class of graph-directed constructions which are connected and have the property of finite ramification. By assuming the existence of a fixed point for a certain renormalization map, it is possible to construct a Laplace operator on fractals in this class via their Dirichlet forms. Our main aim is to consider the eigenvalues of the Laplace operator and provide a formula for the spectral dimension, the exponent determining the power-law scaling in the eigenvalue counting function, and establish generic constancy for the counting-function asymptotics. In order to do this we prove an extension of the multidimensional renewal theorem. As a result we show that it is possible for the eigenvalue counting function for fractals to require a logarithmic correction to the usual power-law growth. AMS 2000 Mathematics subject classification: Primary 35P20; 58J50. Secondary 28A80; 60K05; 31C25</description><subject>counting-function asymptotics</subject><subject>Dirichlet form</subject><subject>fractal</subject><subject>renewal theory</subject><issn>0013-0915</issn><issn>1464-3839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kF1PgzAUhhujiXP6A7wjXou2tEB7SViBKh8TWMyuGgZUNz82YUv031uyRS-M5-bk9H3e8zYHgEsEbxBE7m0BIcKQIRsO5WJ4BEaIOMTEFLNjMBpkc9BPwVnfrwbGtdEIPAciFSWP50buJSIQfGKEuTeNzInIuV_qMcg9v_Ti4toopvol92LDK-bJtMxK4ReGl06MMuJGMotLMREJTwuRpRrKecofdddilvPkHJyo6rVvLw59DGYBL_3IjLNQ-F5s1jZkW5NAomplIYtBXJEaMVUzWFnNQpGWMYYwVTWlSEGsiAWpam3HbVpY0YZB2tQIj8HVfu-mW3_s2n4rV-td964jpWVR7FBiEQ2hPVR3677vWiU33fKt6r4kgnK4p_xzT-0x955lv20_fwxV9yIdF7u2dMIHGVn3d76DkAw1jw8Z1duiWzZP7e9P_k_5Bq36fCg</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Hambly, B. M.</creator><creator>Nyberg, S. O. G.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20030201</creationdate><title>FINITELY RAMIFIED GRAPH-DIRECTED FRACTALS, SPECTRAL ASYMPTOTICS AND THE MULTIDIMENSIONAL RENEWAL THEOREM</title><author>Hambly, B. M. ; Nyberg, S. O. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-404fcf212903a4c19fc90a2dbf4e999138fc881f03f4208fe567de0a8d908dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>counting-function asymptotics</topic><topic>Dirichlet form</topic><topic>fractal</topic><topic>renewal theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hambly, B. M.</creatorcontrib><creatorcontrib>Nyberg, S. O. G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hambly, B. M.</au><au>Nyberg, S. O. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FINITELY RAMIFIED GRAPH-DIRECTED FRACTALS, SPECTRAL ASYMPTOTICS AND THE MULTIDIMENSIONAL RENEWAL THEOREM</atitle><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><date>2003-02-01</date><risdate>2003</risdate><volume>46</volume><issue>1</issue><spage>1</spage><epage>34</epage><pages>1-34</pages><issn>0013-0915</issn><eissn>1464-3839</eissn><abstract>We consider the class of graph-directed constructions which are connected and have the property of finite ramification. By assuming the existence of a fixed point for a certain renormalization map, it is possible to construct a Laplace operator on fractals in this class via their Dirichlet forms. Our main aim is to consider the eigenvalues of the Laplace operator and provide a formula for the spectral dimension, the exponent determining the power-law scaling in the eigenvalue counting function, and establish generic constancy for the counting-function asymptotics. In order to do this we prove an extension of the multidimensional renewal theorem. As a result we show that it is possible for the eigenvalue counting function for fractals to require a logarithmic correction to the usual power-law growth. AMS 2000 Mathematics subject classification: Primary 35P20; 58J50. Secondary 28A80; 60K05; 31C25</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0013091500000730</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-0915
ispartof Proceedings of the Edinburgh Mathematical Society, 2003-02, Vol.46 (1), p.1-34
issn 0013-0915
1464-3839
language eng
recordid cdi_proquest_journals_228368424
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge University Press Journals Complete
subjects counting-function asymptotics
Dirichlet form
fractal
renewal theory
title FINITELY RAMIFIED GRAPH-DIRECTED FRACTALS, SPECTRAL ASYMPTOTICS AND THE MULTIDIMENSIONAL RENEWAL THEOREM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FINITELY%20RAMIFIED%20GRAPH-DIRECTED%20FRACTALS,%20SPECTRAL%20ASYMPTOTICS%20AND%20THE%20MULTIDIMENSIONAL%20RENEWAL%20THEOREM&rft.jtitle=Proceedings%20of%20the%20Edinburgh%20Mathematical%20Society&rft.au=Hambly,%20B.%20M.&rft.date=2003-02-01&rft.volume=46&rft.issue=1&rft.spage=1&rft.epage=34&rft.pages=1-34&rft.issn=0013-0915&rft.eissn=1464-3839&rft_id=info:doi/10.1017/S0013091500000730&rft_dat=%3Cproquest_cross%3E1401847201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228368424&rft_id=info:pmid/&rft_cupid=10_1017_S0013091500000730&rfr_iscdi=true