Efficient 3D Stress Capture of Variable-Stiffness and Sandwich Beam Structures
Accurate modeling of composite structures is important for their safe application under different loading conditions. To provide accurate predictions of three-dimensional (3D) stress fields in an efficient computational framework, in this study, a modeling approach that builds upon the recently deve...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2019-09, Vol.57 (9), p.4042-4056 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4056 |
---|---|
container_issue | 9 |
container_start_page | 4042 |
container_title | AIAA journal |
container_volume | 57 |
creator | Patni, M Minera, S Groh, R. M. J Pirrera, A Weaver, P. M |
description | Accurate modeling of composite structures is important for their safe application under different loading conditions. To provide accurate predictions of three-dimensional (3D) stress fields in an efficient computational framework, in this study, a modeling approach that builds upon the recently developed hierarchical Serendipity Lagrange finite elements (FEs) is employed. The approach provides layerwise (LW) and equivalent single-layer (ESL) models for analyzing constant- and variable-stiffness laminated beam structures. To enhance the capability of the ESL model, two zig-zag (ZZ) functions, namely, Murakami’s ZZ function (MZZF) and the refined ZZ theory function (RZT), are implemented. For constant-stiffness laminated and sandwich beams, the RZT ZZ function predicts the structural response more accurately than the MZZF. However, for variable-stiffness laminated structures, the applicability of RZT remains unknown and its accuracy is therefore tested within the present formulation. Results obtained are validated against 3D closed-form and 3D FE solutions available from the literature. For similar levels of accuracy, significant gains in computational efficiency are achieved over 3D FE and LW models by using the ESL approach with RZT ZZ functions. |
doi_str_mv | 10.2514/1.J058220 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2283460437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283460437</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-fabd3a0e03ab9ebf043a2d27ae6112ef6e9ca3946ed235fb78ed89140f5fae183</originalsourceid><addsrcrecordid>eNplkM1Lw0AQxRdRMFYP_gcLguAhdT-yyeaobf2i6KEq3pZJMotb2qTuJoj_vQkpePAywzC_9x48Qs45mwrFk2s-fWJKC8EOSMSVlLHU6uOQRIwxHvNEiWNyEsK6v0SmeUSeF9a60mHdUjmnq9ZjCHQGu7bzSBtL38E7KDYYr1pnbT18oa7oqh_frvyktwjbQdaVgyKckiMLm4Bn-z0hb3eL19lDvHy5f5zdLGOQQraxhaKSwJBJKHIsLEskiEpkgCnnAm2KeQkyT1KshFS2yDRWOucJs8oCci0n5GL03fnmq8PQmnXT-bqPNEJomaS9Y9ZTVyNV-iYEj9bsvNuC_zGcmaEuw82-rp69HFlwAH9u_8FfqYVn_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283460437</pqid></control><display><type>article</type><title>Efficient 3D Stress Capture of Variable-Stiffness and Sandwich Beam Structures</title><source>Alma/SFX Local Collection</source><creator>Patni, M ; Minera, S ; Groh, R. M. J ; Pirrera, A ; Weaver, P. M</creator><creatorcontrib>Patni, M ; Minera, S ; Groh, R. M. J ; Pirrera, A ; Weaver, P. M</creatorcontrib><description>Accurate modeling of composite structures is important for their safe application under different loading conditions. To provide accurate predictions of three-dimensional (3D) stress fields in an efficient computational framework, in this study, a modeling approach that builds upon the recently developed hierarchical Serendipity Lagrange finite elements (FEs) is employed. The approach provides layerwise (LW) and equivalent single-layer (ESL) models for analyzing constant- and variable-stiffness laminated beam structures. To enhance the capability of the ESL model, two zig-zag (ZZ) functions, namely, Murakami’s ZZ function (MZZF) and the refined ZZ theory function (RZT), are implemented. For constant-stiffness laminated and sandwich beams, the RZT ZZ function predicts the structural response more accurately than the MZZF. However, for variable-stiffness laminated structures, the applicability of RZT remains unknown and its accuracy is therefore tested within the present formulation. Results obtained are validated against 3D closed-form and 3D FE solutions available from the literature. For similar levels of accuracy, significant gains in computational efficiency are achieved over 3D FE and LW models by using the ESL approach with RZT ZZ functions.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J058220</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Accuracy ; Beams (structural) ; Composite structures ; Computational efficiency ; Iron ; Sandwich structures ; Stiffness ; Stress distribution ; Three dimensional models</subject><ispartof>AIAA journal, 2019-09, Vol.57 (9), p.4042-4056</ispartof><rights>Copyright © 2019 by M. Patni and P. M. Weaver. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2019 by M. Patni and P. M. Weaver. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-fabd3a0e03ab9ebf043a2d27ae6112ef6e9ca3946ed235fb78ed89140f5fae183</citedby><cites>FETCH-LOGICAL-a323t-fabd3a0e03ab9ebf043a2d27ae6112ef6e9ca3946ed235fb78ed89140f5fae183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Patni, M</creatorcontrib><creatorcontrib>Minera, S</creatorcontrib><creatorcontrib>Groh, R. M. J</creatorcontrib><creatorcontrib>Pirrera, A</creatorcontrib><creatorcontrib>Weaver, P. M</creatorcontrib><title>Efficient 3D Stress Capture of Variable-Stiffness and Sandwich Beam Structures</title><title>AIAA journal</title><description>Accurate modeling of composite structures is important for their safe application under different loading conditions. To provide accurate predictions of three-dimensional (3D) stress fields in an efficient computational framework, in this study, a modeling approach that builds upon the recently developed hierarchical Serendipity Lagrange finite elements (FEs) is employed. The approach provides layerwise (LW) and equivalent single-layer (ESL) models for analyzing constant- and variable-stiffness laminated beam structures. To enhance the capability of the ESL model, two zig-zag (ZZ) functions, namely, Murakami’s ZZ function (MZZF) and the refined ZZ theory function (RZT), are implemented. For constant-stiffness laminated and sandwich beams, the RZT ZZ function predicts the structural response more accurately than the MZZF. However, for variable-stiffness laminated structures, the applicability of RZT remains unknown and its accuracy is therefore tested within the present formulation. Results obtained are validated against 3D closed-form and 3D FE solutions available from the literature. For similar levels of accuracy, significant gains in computational efficiency are achieved over 3D FE and LW models by using the ESL approach with RZT ZZ functions.</description><subject>Accuracy</subject><subject>Beams (structural)</subject><subject>Composite structures</subject><subject>Computational efficiency</subject><subject>Iron</subject><subject>Sandwich structures</subject><subject>Stiffness</subject><subject>Stress distribution</subject><subject>Three dimensional models</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNplkM1Lw0AQxRdRMFYP_gcLguAhdT-yyeaobf2i6KEq3pZJMotb2qTuJoj_vQkpePAywzC_9x48Qs45mwrFk2s-fWJKC8EOSMSVlLHU6uOQRIwxHvNEiWNyEsK6v0SmeUSeF9a60mHdUjmnq9ZjCHQGu7bzSBtL38E7KDYYr1pnbT18oa7oqh_frvyktwjbQdaVgyKckiMLm4Bn-z0hb3eL19lDvHy5f5zdLGOQQraxhaKSwJBJKHIsLEskiEpkgCnnAm2KeQkyT1KshFS2yDRWOucJs8oCci0n5GL03fnmq8PQmnXT-bqPNEJomaS9Y9ZTVyNV-iYEj9bsvNuC_zGcmaEuw82-rp69HFlwAH9u_8FfqYVn_w</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Patni, M</creator><creator>Minera, S</creator><creator>Groh, R. M. J</creator><creator>Pirrera, A</creator><creator>Weaver, P. M</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190901</creationdate><title>Efficient 3D Stress Capture of Variable-Stiffness and Sandwich Beam Structures</title><author>Patni, M ; Minera, S ; Groh, R. M. J ; Pirrera, A ; Weaver, P. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-fabd3a0e03ab9ebf043a2d27ae6112ef6e9ca3946ed235fb78ed89140f5fae183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Beams (structural)</topic><topic>Composite structures</topic><topic>Computational efficiency</topic><topic>Iron</topic><topic>Sandwich structures</topic><topic>Stiffness</topic><topic>Stress distribution</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patni, M</creatorcontrib><creatorcontrib>Minera, S</creatorcontrib><creatorcontrib>Groh, R. M. J</creatorcontrib><creatorcontrib>Pirrera, A</creatorcontrib><creatorcontrib>Weaver, P. M</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patni, M</au><au>Minera, S</au><au>Groh, R. M. J</au><au>Pirrera, A</au><au>Weaver, P. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient 3D Stress Capture of Variable-Stiffness and Sandwich Beam Structures</atitle><jtitle>AIAA journal</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>57</volume><issue>9</issue><spage>4042</spage><epage>4056</epage><pages>4042-4056</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>Accurate modeling of composite structures is important for their safe application under different loading conditions. To provide accurate predictions of three-dimensional (3D) stress fields in an efficient computational framework, in this study, a modeling approach that builds upon the recently developed hierarchical Serendipity Lagrange finite elements (FEs) is employed. The approach provides layerwise (LW) and equivalent single-layer (ESL) models for analyzing constant- and variable-stiffness laminated beam structures. To enhance the capability of the ESL model, two zig-zag (ZZ) functions, namely, Murakami’s ZZ function (MZZF) and the refined ZZ theory function (RZT), are implemented. For constant-stiffness laminated and sandwich beams, the RZT ZZ function predicts the structural response more accurately than the MZZF. However, for variable-stiffness laminated structures, the applicability of RZT remains unknown and its accuracy is therefore tested within the present formulation. Results obtained are validated against 3D closed-form and 3D FE solutions available from the literature. For similar levels of accuracy, significant gains in computational efficiency are achieved over 3D FE and LW models by using the ESL approach with RZT ZZ functions.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J058220</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2019-09, Vol.57 (9), p.4042-4056 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_proquest_journals_2283460437 |
source | Alma/SFX Local Collection |
subjects | Accuracy Beams (structural) Composite structures Computational efficiency Iron Sandwich structures Stiffness Stress distribution Three dimensional models |
title | Efficient 3D Stress Capture of Variable-Stiffness and Sandwich Beam Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%203D%20Stress%20Capture%20of%20Variable-Stiffness%20and%20Sandwich%20Beam%20Structures&rft.jtitle=AIAA%20journal&rft.au=Patni,%20M&rft.date=2019-09-01&rft.volume=57&rft.issue=9&rft.spage=4042&rft.epage=4056&rft.pages=4042-4056&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J058220&rft_dat=%3Cproquest_aiaa_%3E2283460437%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283460437&rft_id=info:pmid/&rfr_iscdi=true |