Modelling of Soot Aerosol Dynamics in Turbulent Flow

Aerosol dynamics plays an important role in the modelling of soot formation in combustion processes, as it is responsible for predicting the distribution of size and shape of soot particles. The distribution is required for the correct prediction of the rates of surface processes, such as growth and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Flow, turbulence and combustion turbulence and combustion, 2019-09, Vol.103 (3), p.565-604
1. Verfasser: Rigopoulos, Stelios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 604
container_issue 3
container_start_page 565
container_title Flow, turbulence and combustion
container_volume 103
creator Rigopoulos, Stelios
description Aerosol dynamics plays an important role in the modelling of soot formation in combustion processes, as it is responsible for predicting the distribution of size and shape of soot particles. The distribution is required for the correct prediction of the rates of surface processes, such as growth and oxidation, and furthermore it is important on its own because new regulations on particulate emissions require control of the number of smaller particles. Soot formation is strongly dependent on the local chemical composition and thermodynamic conditions and is therefore coupled with fluid dynamics, chemical kinetics and transport phenomena. Comprehensive modelling of soot formation in combustion processes requires coupling of the population balance equation, which is the fundamental equation governing aerosol dynamics, with the equations of fluid dynamics. The presence of turbulence poses an additional challenge, due to the non-linear interactions between fluctuating velocity, temperature, concentrations and soot properties. The purpose of this work is to review the progress made in aerosol dynamics models, their integration with fluid dynamics and the models for addressing the turbulence-soot interaction.
doi_str_mv 10.1007/s10494-019-00054-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2283388197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283388197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-1e76863d460876f78074b42bdc70570e275cbf268ff20755535661bb0aaf1e363</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TynT2WalWoeLCew34kZct2U5NdpP_e6ArePM0cnved4UHomsItBdB3iYIoBAFaEACQgpgTNKNSc0ILo0_zzo0iihpxji5S2mVIaShmSLyExnVd229x8PgthAEvXAwpdPj-2Jf7tk647fFmjNXYuX7Aqy58XqIzX3bJXf3OOXpfPWyWT2T9-vi8XKxJLQAGQp1WRvFGKDBaeW1Ai0qwqqk1SA2OaVlXninjPQMtpeRSKVpVUJaeOq74HN1MvYcYPkaXBrsLY-zzScuY4dwYWuhMsYmq898pOm8Psd2X8Wgp2G87drJjsx37Y8eaHOJTKGW437r4V_1P6gu-CWUz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283388197</pqid></control><display><type>article</type><title>Modelling of Soot Aerosol Dynamics in Turbulent Flow</title><source>SpringerNature Journals</source><creator>Rigopoulos, Stelios</creator><creatorcontrib>Rigopoulos, Stelios</creatorcontrib><description>Aerosol dynamics plays an important role in the modelling of soot formation in combustion processes, as it is responsible for predicting the distribution of size and shape of soot particles. The distribution is required for the correct prediction of the rates of surface processes, such as growth and oxidation, and furthermore it is important on its own because new regulations on particulate emissions require control of the number of smaller particles. Soot formation is strongly dependent on the local chemical composition and thermodynamic conditions and is therefore coupled with fluid dynamics, chemical kinetics and transport phenomena. Comprehensive modelling of soot formation in combustion processes requires coupling of the population balance equation, which is the fundamental equation governing aerosol dynamics, with the equations of fluid dynamics. The presence of turbulence poses an additional challenge, due to the non-linear interactions between fluctuating velocity, temperature, concentrations and soot properties. The purpose of this work is to review the progress made in aerosol dynamics models, their integration with fluid dynamics and the models for addressing the turbulence-soot interaction.</description><identifier>ISSN: 1386-6184</identifier><identifier>EISSN: 1573-1987</identifier><identifier>DOI: 10.1007/s10494-019-00054-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerodynamics ; Aerosols ; Automotive Engineering ; Chemical composition ; Combustion ; Computational fluid dynamics ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid dynamics ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Modelling ; Organic chemistry ; Oxidation ; Particulate emissions ; Population balance models ; Predictions ; Reaction kinetics ; Soot ; Transport phenomena ; Turbulence ; Turbulent flow ; Variations</subject><ispartof>Flow, turbulence and combustion, 2019-09, Vol.103 (3), p.565-604</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-1e76863d460876f78074b42bdc70570e275cbf268ff20755535661bb0aaf1e363</citedby><cites>FETCH-LOGICAL-c400t-1e76863d460876f78074b42bdc70570e275cbf268ff20755535661bb0aaf1e363</cites><orcidid>0000-0002-0311-2070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10494-019-00054-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10494-019-00054-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rigopoulos, Stelios</creatorcontrib><title>Modelling of Soot Aerosol Dynamics in Turbulent Flow</title><title>Flow, turbulence and combustion</title><addtitle>Flow Turbulence Combust</addtitle><description>Aerosol dynamics plays an important role in the modelling of soot formation in combustion processes, as it is responsible for predicting the distribution of size and shape of soot particles. The distribution is required for the correct prediction of the rates of surface processes, such as growth and oxidation, and furthermore it is important on its own because new regulations on particulate emissions require control of the number of smaller particles. Soot formation is strongly dependent on the local chemical composition and thermodynamic conditions and is therefore coupled with fluid dynamics, chemical kinetics and transport phenomena. Comprehensive modelling of soot formation in combustion processes requires coupling of the population balance equation, which is the fundamental equation governing aerosol dynamics, with the equations of fluid dynamics. The presence of turbulence poses an additional challenge, due to the non-linear interactions between fluctuating velocity, temperature, concentrations and soot properties. The purpose of this work is to review the progress made in aerosol dynamics models, their integration with fluid dynamics and the models for addressing the turbulence-soot interaction.</description><subject>Aerodynamics</subject><subject>Aerosols</subject><subject>Automotive Engineering</subject><subject>Chemical composition</subject><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Modelling</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Particulate emissions</subject><subject>Population balance models</subject><subject>Predictions</subject><subject>Reaction kinetics</subject><subject>Soot</subject><subject>Transport phenomena</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Variations</subject><issn>1386-6184</issn><issn>1573-1987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TynT2WalWoeLCew34kZct2U5NdpP_e6ArePM0cnved4UHomsItBdB3iYIoBAFaEACQgpgTNKNSc0ILo0_zzo0iihpxji5S2mVIaShmSLyExnVd229x8PgthAEvXAwpdPj-2Jf7tk647fFmjNXYuX7Aqy58XqIzX3bJXf3OOXpfPWyWT2T9-vi8XKxJLQAGQp1WRvFGKDBaeW1Ai0qwqqk1SA2OaVlXninjPQMtpeRSKVpVUJaeOq74HN1MvYcYPkaXBrsLY-zzScuY4dwYWuhMsYmq898pOm8Psd2X8Wgp2G87drJjsx37Y8eaHOJTKGW437r4V_1P6gu-CWUz</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Rigopoulos, Stelios</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0311-2070</orcidid></search><sort><creationdate>20190901</creationdate><title>Modelling of Soot Aerosol Dynamics in Turbulent Flow</title><author>Rigopoulos, Stelios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-1e76863d460876f78074b42bdc70570e275cbf268ff20755535661bb0aaf1e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamics</topic><topic>Aerosols</topic><topic>Automotive Engineering</topic><topic>Chemical composition</topic><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Modelling</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Particulate emissions</topic><topic>Population balance models</topic><topic>Predictions</topic><topic>Reaction kinetics</topic><topic>Soot</topic><topic>Transport phenomena</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rigopoulos, Stelios</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Flow, turbulence and combustion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rigopoulos, Stelios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of Soot Aerosol Dynamics in Turbulent Flow</atitle><jtitle>Flow, turbulence and combustion</jtitle><stitle>Flow Turbulence Combust</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>103</volume><issue>3</issue><spage>565</spage><epage>604</epage><pages>565-604</pages><issn>1386-6184</issn><eissn>1573-1987</eissn><abstract>Aerosol dynamics plays an important role in the modelling of soot formation in combustion processes, as it is responsible for predicting the distribution of size and shape of soot particles. The distribution is required for the correct prediction of the rates of surface processes, such as growth and oxidation, and furthermore it is important on its own because new regulations on particulate emissions require control of the number of smaller particles. Soot formation is strongly dependent on the local chemical composition and thermodynamic conditions and is therefore coupled with fluid dynamics, chemical kinetics and transport phenomena. Comprehensive modelling of soot formation in combustion processes requires coupling of the population balance equation, which is the fundamental equation governing aerosol dynamics, with the equations of fluid dynamics. The presence of turbulence poses an additional challenge, due to the non-linear interactions between fluctuating velocity, temperature, concentrations and soot properties. The purpose of this work is to review the progress made in aerosol dynamics models, their integration with fluid dynamics and the models for addressing the turbulence-soot interaction.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10494-019-00054-8</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-0311-2070</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1386-6184
ispartof Flow, turbulence and combustion, 2019-09, Vol.103 (3), p.565-604
issn 1386-6184
1573-1987
language eng
recordid cdi_proquest_journals_2283388197
source SpringerNature Journals
subjects Aerodynamics
Aerosols
Automotive Engineering
Chemical composition
Combustion
Computational fluid dynamics
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid dynamics
Fluid flow
Fluid- and Aerodynamics
Heat and Mass Transfer
Modelling
Organic chemistry
Oxidation
Particulate emissions
Population balance models
Predictions
Reaction kinetics
Soot
Transport phenomena
Turbulence
Turbulent flow
Variations
title Modelling of Soot Aerosol Dynamics in Turbulent Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20Soot%20Aerosol%20Dynamics%20in%20Turbulent%20Flow&rft.jtitle=Flow,%20turbulence%20and%20combustion&rft.au=Rigopoulos,%20Stelios&rft.date=2019-09-01&rft.volume=103&rft.issue=3&rft.spage=565&rft.epage=604&rft.pages=565-604&rft.issn=1386-6184&rft.eissn=1573-1987&rft_id=info:doi/10.1007/s10494-019-00054-8&rft_dat=%3Cproquest_cross%3E2283388197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283388197&rft_id=info:pmid/&rfr_iscdi=true