Modelling of Soot Aerosol Dynamics in Turbulent Flow
Aerosol dynamics plays an important role in the modelling of soot formation in combustion processes, as it is responsible for predicting the distribution of size and shape of soot particles. The distribution is required for the correct prediction of the rates of surface processes, such as growth and...
Gespeichert in:
Veröffentlicht in: | Flow, turbulence and combustion turbulence and combustion, 2019-09, Vol.103 (3), p.565-604 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 604 |
---|---|
container_issue | 3 |
container_start_page | 565 |
container_title | Flow, turbulence and combustion |
container_volume | 103 |
creator | Rigopoulos, Stelios |
description | Aerosol dynamics plays an important role in the modelling of soot formation in combustion processes, as it is responsible for predicting the distribution of size and shape of soot particles. The distribution is required for the correct prediction of the rates of surface processes, such as growth and oxidation, and furthermore it is important on its own because new regulations on particulate emissions require control of the number of smaller particles. Soot formation is strongly dependent on the local chemical composition and thermodynamic conditions and is therefore coupled with fluid dynamics, chemical kinetics and transport phenomena. Comprehensive modelling of soot formation in combustion processes requires coupling of the population balance equation, which is the fundamental equation governing aerosol dynamics, with the equations of fluid dynamics. The presence of turbulence poses an additional challenge, due to the non-linear interactions between fluctuating velocity, temperature, concentrations and soot properties. The purpose of this work is to review the progress made in aerosol dynamics models, their integration with fluid dynamics and the models for addressing the turbulence-soot interaction. |
doi_str_mv | 10.1007/s10494-019-00054-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2283388197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283388197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-1e76863d460876f78074b42bdc70570e275cbf268ff20755535661bb0aaf1e363</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TynT2WalWoeLCew34kZct2U5NdpP_e6ArePM0cnved4UHomsItBdB3iYIoBAFaEACQgpgTNKNSc0ILo0_zzo0iihpxji5S2mVIaShmSLyExnVd229x8PgthAEvXAwpdPj-2Jf7tk647fFmjNXYuX7Aqy58XqIzX3bJXf3OOXpfPWyWT2T9-vi8XKxJLQAGQp1WRvFGKDBaeW1Ai0qwqqk1SA2OaVlXninjPQMtpeRSKVpVUJaeOq74HN1MvYcYPkaXBrsLY-zzScuY4dwYWuhMsYmq898pOm8Psd2X8Wgp2G87drJjsx37Y8eaHOJTKGW437r4V_1P6gu-CWUz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283388197</pqid></control><display><type>article</type><title>Modelling of Soot Aerosol Dynamics in Turbulent Flow</title><source>SpringerNature Journals</source><creator>Rigopoulos, Stelios</creator><creatorcontrib>Rigopoulos, Stelios</creatorcontrib><description>Aerosol dynamics plays an important role in the modelling of soot formation in combustion processes, as it is responsible for predicting the distribution of size and shape of soot particles. The distribution is required for the correct prediction of the rates of surface processes, such as growth and oxidation, and furthermore it is important on its own because new regulations on particulate emissions require control of the number of smaller particles. Soot formation is strongly dependent on the local chemical composition and thermodynamic conditions and is therefore coupled with fluid dynamics, chemical kinetics and transport phenomena. Comprehensive modelling of soot formation in combustion processes requires coupling of the population balance equation, which is the fundamental equation governing aerosol dynamics, with the equations of fluid dynamics. The presence of turbulence poses an additional challenge, due to the non-linear interactions between fluctuating velocity, temperature, concentrations and soot properties. The purpose of this work is to review the progress made in aerosol dynamics models, their integration with fluid dynamics and the models for addressing the turbulence-soot interaction.</description><identifier>ISSN: 1386-6184</identifier><identifier>EISSN: 1573-1987</identifier><identifier>DOI: 10.1007/s10494-019-00054-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerodynamics ; Aerosols ; Automotive Engineering ; Chemical composition ; Combustion ; Computational fluid dynamics ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid dynamics ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Modelling ; Organic chemistry ; Oxidation ; Particulate emissions ; Population balance models ; Predictions ; Reaction kinetics ; Soot ; Transport phenomena ; Turbulence ; Turbulent flow ; Variations</subject><ispartof>Flow, turbulence and combustion, 2019-09, Vol.103 (3), p.565-604</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-1e76863d460876f78074b42bdc70570e275cbf268ff20755535661bb0aaf1e363</citedby><cites>FETCH-LOGICAL-c400t-1e76863d460876f78074b42bdc70570e275cbf268ff20755535661bb0aaf1e363</cites><orcidid>0000-0002-0311-2070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10494-019-00054-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10494-019-00054-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rigopoulos, Stelios</creatorcontrib><title>Modelling of Soot Aerosol Dynamics in Turbulent Flow</title><title>Flow, turbulence and combustion</title><addtitle>Flow Turbulence Combust</addtitle><description>Aerosol dynamics plays an important role in the modelling of soot formation in combustion processes, as it is responsible for predicting the distribution of size and shape of soot particles. The distribution is required for the correct prediction of the rates of surface processes, such as growth and oxidation, and furthermore it is important on its own because new regulations on particulate emissions require control of the number of smaller particles. Soot formation is strongly dependent on the local chemical composition and thermodynamic conditions and is therefore coupled with fluid dynamics, chemical kinetics and transport phenomena. Comprehensive modelling of soot formation in combustion processes requires coupling of the population balance equation, which is the fundamental equation governing aerosol dynamics, with the equations of fluid dynamics. The presence of turbulence poses an additional challenge, due to the non-linear interactions between fluctuating velocity, temperature, concentrations and soot properties. The purpose of this work is to review the progress made in aerosol dynamics models, their integration with fluid dynamics and the models for addressing the turbulence-soot interaction.</description><subject>Aerodynamics</subject><subject>Aerosols</subject><subject>Automotive Engineering</subject><subject>Chemical composition</subject><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Modelling</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Particulate emissions</subject><subject>Population balance models</subject><subject>Predictions</subject><subject>Reaction kinetics</subject><subject>Soot</subject><subject>Transport phenomena</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Variations</subject><issn>1386-6184</issn><issn>1573-1987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TynT2WalWoeLCew34kZct2U5NdpP_e6ArePM0cnved4UHomsItBdB3iYIoBAFaEACQgpgTNKNSc0ILo0_zzo0iihpxji5S2mVIaShmSLyExnVd229x8PgthAEvXAwpdPj-2Jf7tk647fFmjNXYuX7Aqy58XqIzX3bJXf3OOXpfPWyWT2T9-vi8XKxJLQAGQp1WRvFGKDBaeW1Ai0qwqqk1SA2OaVlXninjPQMtpeRSKVpVUJaeOq74HN1MvYcYPkaXBrsLY-zzScuY4dwYWuhMsYmq898pOm8Psd2X8Wgp2G87drJjsx37Y8eaHOJTKGW437r4V_1P6gu-CWUz</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Rigopoulos, Stelios</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0311-2070</orcidid></search><sort><creationdate>20190901</creationdate><title>Modelling of Soot Aerosol Dynamics in Turbulent Flow</title><author>Rigopoulos, Stelios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-1e76863d460876f78074b42bdc70570e275cbf268ff20755535661bb0aaf1e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamics</topic><topic>Aerosols</topic><topic>Automotive Engineering</topic><topic>Chemical composition</topic><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Modelling</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Particulate emissions</topic><topic>Population balance models</topic><topic>Predictions</topic><topic>Reaction kinetics</topic><topic>Soot</topic><topic>Transport phenomena</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rigopoulos, Stelios</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Flow, turbulence and combustion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rigopoulos, Stelios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of Soot Aerosol Dynamics in Turbulent Flow</atitle><jtitle>Flow, turbulence and combustion</jtitle><stitle>Flow Turbulence Combust</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>103</volume><issue>3</issue><spage>565</spage><epage>604</epage><pages>565-604</pages><issn>1386-6184</issn><eissn>1573-1987</eissn><abstract>Aerosol dynamics plays an important role in the modelling of soot formation in combustion processes, as it is responsible for predicting the distribution of size and shape of soot particles. The distribution is required for the correct prediction of the rates of surface processes, such as growth and oxidation, and furthermore it is important on its own because new regulations on particulate emissions require control of the number of smaller particles. Soot formation is strongly dependent on the local chemical composition and thermodynamic conditions and is therefore coupled with fluid dynamics, chemical kinetics and transport phenomena. Comprehensive modelling of soot formation in combustion processes requires coupling of the population balance equation, which is the fundamental equation governing aerosol dynamics, with the equations of fluid dynamics. The presence of turbulence poses an additional challenge, due to the non-linear interactions between fluctuating velocity, temperature, concentrations and soot properties. The purpose of this work is to review the progress made in aerosol dynamics models, their integration with fluid dynamics and the models for addressing the turbulence-soot interaction.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10494-019-00054-8</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-0311-2070</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-6184 |
ispartof | Flow, turbulence and combustion, 2019-09, Vol.103 (3), p.565-604 |
issn | 1386-6184 1573-1987 |
language | eng |
recordid | cdi_proquest_journals_2283388197 |
source | SpringerNature Journals |
subjects | Aerodynamics Aerosols Automotive Engineering Chemical composition Combustion Computational fluid dynamics Engineering Engineering Fluid Dynamics Engineering Thermodynamics Fluid dynamics Fluid flow Fluid- and Aerodynamics Heat and Mass Transfer Modelling Organic chemistry Oxidation Particulate emissions Population balance models Predictions Reaction kinetics Soot Transport phenomena Turbulence Turbulent flow Variations |
title | Modelling of Soot Aerosol Dynamics in Turbulent Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20Soot%20Aerosol%20Dynamics%20in%20Turbulent%20Flow&rft.jtitle=Flow,%20turbulence%20and%20combustion&rft.au=Rigopoulos,%20Stelios&rft.date=2019-09-01&rft.volume=103&rft.issue=3&rft.spage=565&rft.epage=604&rft.pages=565-604&rft.issn=1386-6184&rft.eissn=1573-1987&rft_id=info:doi/10.1007/s10494-019-00054-8&rft_dat=%3Cproquest_cross%3E2283388197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283388197&rft_id=info:pmid/&rfr_iscdi=true |