Characterization of mechanically reinforced electrospun dextrin‐polyethylene oxide sub‐microfiber mats
Dextrin and dextrin‐polyethylene oxide (DEX/PEO) fibers in the submicron range were produced by electrospinning of single and blend polymer solutions. The morphology, intermolecular interactions, and mechanical properties of dextrin microfibers with and without PEO were characterized by scanning ele...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2019-09, Vol.59 (9), p.1778-1786 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1786 |
---|---|
container_issue | 9 |
container_start_page | 1778 |
container_title | Polymer engineering and science |
container_volume | 59 |
creator | Rodríguez‐Zamora, Penélope Peña‐Juárez, Ma. Concepción Cedillo‐Servín, Gerardo Paloalto‐Landon, Alejandro Ortega‐García, Iván Maaza, Malik Vera‐Graziano, Ricardo |
description | Dextrin and dextrin‐polyethylene oxide (DEX/PEO) fibers in the submicron range were produced by electrospinning of single and blend polymer solutions. The morphology, intermolecular interactions, and mechanical properties of dextrin microfibers with and without PEO were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray diffraction, nuclear magnetic resonance spectroscopy, and uniaxial tensile testing. Spectroscopic results confirmed hydrogen bond formation, evidencing dextrin as a molecular entanglement source for fiber mechanical reinforcement. The uniaxial tensile tests demonstrated a synergistic mechanical reinforcement effect that varied with blend composition. Equal weight ratio blends supported a maximum tensile strength with a high elastic modulus and demonstrated to be more elastic and resistant to breaking, even than pristine PEO fibers. Moreover, elastic moduli of blend fiber mats were found to lie within the value range for human skin, thus providing the DEX/PEO meshes with potential applicability as skin tissue scaffolds. This synthesis approach proved the feasible and inexpensive fabrication process of natural‐synthetic polymer hybrid fibers that combine the biocompatibility, biodegradability, and encapsulating capability of dextrin with the mechanical strength and flexibility of PEO for the development of scaffolds for tissue engineering and topical drug delivery applications in skin wound healing. POLYM. ENG. SCI., 59:1778–1786, 2019. © 2019 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.25177 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2283387773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A600664605</galeid><sourcerecordid>A600664605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5107-dc5379178c077c2d91751cc70685aad3e79a162ff909082b6495d224105d69083</originalsourceid><addsrcrecordid>eNp1kt9qFDEUxoNYcK1e-AYDXgnONn8mk5nLslRbKCqtXodscmY3y0wyJhna8cpH6DP6JKauoAtbAkk4-X0nOV8OQm8IXhKM6dkIbkk5EeIZWhBeNSWtWfUcLTBmtGRN07xAL2Pc4cwy3i7QbrVVQekEwf5QyXpX-K4YQG-Vs1r1_VwEsK7zQYMpoAedgo_j5AoD9ylY9-vnw-j7GdJ27sFB4e-tgSJO63wwWB18Z9cQikGl-AqddKqP8Prveoq-fbj4urosrz9_vFqdX5eaEyxKozkTLRGNxkJoavKWE60FrhuulGEgWkVq2nUtbnFD13XVckNpRTA3dY6wU_R2n3cM_vsEMcmdn4LLV0pKG8YaIQT7R21UD_KxxJR9GGzU8rzGuK6rGvNMlUeoTa40qN476GwOH_DLI3weBrIbRwXvDgSZSdnZjZpilFe3N4fs-__Y9RStg5inaDfbFPeSY6nzL8QYoJNjsIMKsyRYPjaLzM0i_zRLZs_27F1-3_w0KL9cfNorfgOk18Bx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283387773</pqid></control><display><type>article</type><title>Characterization of mechanically reinforced electrospun dextrin‐polyethylene oxide sub‐microfiber mats</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rodríguez‐Zamora, Penélope ; Peña‐Juárez, Ma. Concepción ; Cedillo‐Servín, Gerardo ; Paloalto‐Landon, Alejandro ; Ortega‐García, Iván ; Maaza, Malik ; Vera‐Graziano, Ricardo</creator><creatorcontrib>Rodríguez‐Zamora, Penélope ; Peña‐Juárez, Ma. Concepción ; Cedillo‐Servín, Gerardo ; Paloalto‐Landon, Alejandro ; Ortega‐García, Iván ; Maaza, Malik ; Vera‐Graziano, Ricardo</creatorcontrib><description>Dextrin and dextrin‐polyethylene oxide (DEX/PEO) fibers in the submicron range were produced by electrospinning of single and blend polymer solutions. The morphology, intermolecular interactions, and mechanical properties of dextrin microfibers with and without PEO were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray diffraction, nuclear magnetic resonance spectroscopy, and uniaxial tensile testing. Spectroscopic results confirmed hydrogen bond formation, evidencing dextrin as a molecular entanglement source for fiber mechanical reinforcement. The uniaxial tensile tests demonstrated a synergistic mechanical reinforcement effect that varied with blend composition. Equal weight ratio blends supported a maximum tensile strength with a high elastic modulus and demonstrated to be more elastic and resistant to breaking, even than pristine PEO fibers. Moreover, elastic moduli of blend fiber mats were found to lie within the value range for human skin, thus providing the DEX/PEO meshes with potential applicability as skin tissue scaffolds. This synthesis approach proved the feasible and inexpensive fabrication process of natural‐synthetic polymer hybrid fibers that combine the biocompatibility, biodegradability, and encapsulating capability of dextrin with the mechanical strength and flexibility of PEO for the development of scaffolds for tissue engineering and topical drug delivery applications in skin wound healing. POLYM. ENG. SCI., 59:1778–1786, 2019. © 2019 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25177</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Biocompatibility ; Biodegradability ; Composition ; Dermatologic agents ; Dextrin ; Dextrins ; Diagnostic imaging ; Drug delivery systems ; Electron microscopy ; Entanglement ; Fibers ; Fourier transforms ; Hydrogen ; Hydrogen bonds ; Infrared spectroscopy ; Materials research ; Mats ; Mechanical properties ; Microfibers ; Microscopy ; Modulus of elasticity ; Morphology ; NMR ; Nuclear magnetic resonance ; Nuclear magnetic resonance spectroscopy ; Polyethylene ; Polyethylenes ; Polymer industry ; Polymers ; Production processes ; Properties ; Raman spectroscopy ; Scaffolds ; Skin ; Skin care products ; Spectroscopy ; Spectrum analysis ; Tensile tests ; Tissue engineering ; Wound care ; Wound healing ; Wounds ; X-ray diffraction</subject><ispartof>Polymer engineering and science, 2019-09, Vol.59 (9), p.1778-1786</ispartof><rights>2019 Society of Plastics Engineers</rights><rights>COPYRIGHT 2019 Society of Plastics Engineers, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5107-dc5379178c077c2d91751cc70685aad3e79a162ff909082b6495d224105d69083</citedby><cites>FETCH-LOGICAL-c5107-dc5379178c077c2d91751cc70685aad3e79a162ff909082b6495d224105d69083</cites><orcidid>0000-0002-0963-7046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Rodríguez‐Zamora, Penélope</creatorcontrib><creatorcontrib>Peña‐Juárez, Ma. Concepción</creatorcontrib><creatorcontrib>Cedillo‐Servín, Gerardo</creatorcontrib><creatorcontrib>Paloalto‐Landon, Alejandro</creatorcontrib><creatorcontrib>Ortega‐García, Iván</creatorcontrib><creatorcontrib>Maaza, Malik</creatorcontrib><creatorcontrib>Vera‐Graziano, Ricardo</creatorcontrib><title>Characterization of mechanically reinforced electrospun dextrin‐polyethylene oxide sub‐microfiber mats</title><title>Polymer engineering and science</title><description>Dextrin and dextrin‐polyethylene oxide (DEX/PEO) fibers in the submicron range were produced by electrospinning of single and blend polymer solutions. The morphology, intermolecular interactions, and mechanical properties of dextrin microfibers with and without PEO were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray diffraction, nuclear magnetic resonance spectroscopy, and uniaxial tensile testing. Spectroscopic results confirmed hydrogen bond formation, evidencing dextrin as a molecular entanglement source for fiber mechanical reinforcement. The uniaxial tensile tests demonstrated a synergistic mechanical reinforcement effect that varied with blend composition. Equal weight ratio blends supported a maximum tensile strength with a high elastic modulus and demonstrated to be more elastic and resistant to breaking, even than pristine PEO fibers. Moreover, elastic moduli of blend fiber mats were found to lie within the value range for human skin, thus providing the DEX/PEO meshes with potential applicability as skin tissue scaffolds. This synthesis approach proved the feasible and inexpensive fabrication process of natural‐synthetic polymer hybrid fibers that combine the biocompatibility, biodegradability, and encapsulating capability of dextrin with the mechanical strength and flexibility of PEO for the development of scaffolds for tissue engineering and topical drug delivery applications in skin wound healing. POLYM. ENG. SCI., 59:1778–1786, 2019. © 2019 Society of Plastics Engineers</description><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Composition</subject><subject>Dermatologic agents</subject><subject>Dextrin</subject><subject>Dextrins</subject><subject>Diagnostic imaging</subject><subject>Drug delivery systems</subject><subject>Electron microscopy</subject><subject>Entanglement</subject><subject>Fibers</subject><subject>Fourier transforms</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>Infrared spectroscopy</subject><subject>Materials research</subject><subject>Mats</subject><subject>Mechanical properties</subject><subject>Microfibers</subject><subject>Microscopy</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear magnetic resonance spectroscopy</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Polymer industry</subject><subject>Polymers</subject><subject>Production processes</subject><subject>Properties</subject><subject>Raman spectroscopy</subject><subject>Scaffolds</subject><subject>Skin</subject><subject>Skin care products</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Tensile tests</subject><subject>Tissue engineering</subject><subject>Wound care</subject><subject>Wound healing</subject><subject>Wounds</subject><subject>X-ray diffraction</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kt9qFDEUxoNYcK1e-AYDXgnONn8mk5nLslRbKCqtXodscmY3y0wyJhna8cpH6DP6JKauoAtbAkk4-X0nOV8OQm8IXhKM6dkIbkk5EeIZWhBeNSWtWfUcLTBmtGRN07xAL2Pc4cwy3i7QbrVVQekEwf5QyXpX-K4YQG-Vs1r1_VwEsK7zQYMpoAedgo_j5AoD9ylY9-vnw-j7GdJ27sFB4e-tgSJO63wwWB18Z9cQikGl-AqddKqP8Prveoq-fbj4urosrz9_vFqdX5eaEyxKozkTLRGNxkJoavKWE60FrhuulGEgWkVq2nUtbnFD13XVckNpRTA3dY6wU_R2n3cM_vsEMcmdn4LLV0pKG8YaIQT7R21UD_KxxJR9GGzU8rzGuK6rGvNMlUeoTa40qN476GwOH_DLI3weBrIbRwXvDgSZSdnZjZpilFe3N4fs-__Y9RStg5inaDfbFPeSY6nzL8QYoJNjsIMKsyRYPjaLzM0i_zRLZs_27F1-3_w0KL9cfNorfgOk18Bx</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Rodríguez‐Zamora, Penélope</creator><creator>Peña‐Juárez, Ma. Concepción</creator><creator>Cedillo‐Servín, Gerardo</creator><creator>Paloalto‐Landon, Alejandro</creator><creator>Ortega‐García, Iván</creator><creator>Maaza, Malik</creator><creator>Vera‐Graziano, Ricardo</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0963-7046</orcidid></search><sort><creationdate>201909</creationdate><title>Characterization of mechanically reinforced electrospun dextrin‐polyethylene oxide sub‐microfiber mats</title><author>Rodríguez‐Zamora, Penélope ; Peña‐Juárez, Ma. Concepción ; Cedillo‐Servín, Gerardo ; Paloalto‐Landon, Alejandro ; Ortega‐García, Iván ; Maaza, Malik ; Vera‐Graziano, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5107-dc5379178c077c2d91751cc70685aad3e79a162ff909082b6495d224105d69083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Composition</topic><topic>Dermatologic agents</topic><topic>Dextrin</topic><topic>Dextrins</topic><topic>Diagnostic imaging</topic><topic>Drug delivery systems</topic><topic>Electron microscopy</topic><topic>Entanglement</topic><topic>Fibers</topic><topic>Fourier transforms</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>Infrared spectroscopy</topic><topic>Materials research</topic><topic>Mats</topic><topic>Mechanical properties</topic><topic>Microfibers</topic><topic>Microscopy</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear magnetic resonance spectroscopy</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Polymer industry</topic><topic>Polymers</topic><topic>Production processes</topic><topic>Properties</topic><topic>Raman spectroscopy</topic><topic>Scaffolds</topic><topic>Skin</topic><topic>Skin care products</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Tensile tests</topic><topic>Tissue engineering</topic><topic>Wound care</topic><topic>Wound healing</topic><topic>Wounds</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez‐Zamora, Penélope</creatorcontrib><creatorcontrib>Peña‐Juárez, Ma. Concepción</creatorcontrib><creatorcontrib>Cedillo‐Servín, Gerardo</creatorcontrib><creatorcontrib>Paloalto‐Landon, Alejandro</creatorcontrib><creatorcontrib>Ortega‐García, Iván</creatorcontrib><creatorcontrib>Maaza, Malik</creatorcontrib><creatorcontrib>Vera‐Graziano, Ricardo</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez‐Zamora, Penélope</au><au>Peña‐Juárez, Ma. Concepción</au><au>Cedillo‐Servín, Gerardo</au><au>Paloalto‐Landon, Alejandro</au><au>Ortega‐García, Iván</au><au>Maaza, Malik</au><au>Vera‐Graziano, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of mechanically reinforced electrospun dextrin‐polyethylene oxide sub‐microfiber mats</atitle><jtitle>Polymer engineering and science</jtitle><date>2019-09</date><risdate>2019</risdate><volume>59</volume><issue>9</issue><spage>1778</spage><epage>1786</epage><pages>1778-1786</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>Dextrin and dextrin‐polyethylene oxide (DEX/PEO) fibers in the submicron range were produced by electrospinning of single and blend polymer solutions. The morphology, intermolecular interactions, and mechanical properties of dextrin microfibers with and without PEO were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray diffraction, nuclear magnetic resonance spectroscopy, and uniaxial tensile testing. Spectroscopic results confirmed hydrogen bond formation, evidencing dextrin as a molecular entanglement source for fiber mechanical reinforcement. The uniaxial tensile tests demonstrated a synergistic mechanical reinforcement effect that varied with blend composition. Equal weight ratio blends supported a maximum tensile strength with a high elastic modulus and demonstrated to be more elastic and resistant to breaking, even than pristine PEO fibers. Moreover, elastic moduli of blend fiber mats were found to lie within the value range for human skin, thus providing the DEX/PEO meshes with potential applicability as skin tissue scaffolds. This synthesis approach proved the feasible and inexpensive fabrication process of natural‐synthetic polymer hybrid fibers that combine the biocompatibility, biodegradability, and encapsulating capability of dextrin with the mechanical strength and flexibility of PEO for the development of scaffolds for tissue engineering and topical drug delivery applications in skin wound healing. POLYM. ENG. SCI., 59:1778–1786, 2019. © 2019 Society of Plastics Engineers</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.25177</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0963-7046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2019-09, Vol.59 (9), p.1778-1786 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_2283387773 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biocompatibility Biodegradability Composition Dermatologic agents Dextrin Dextrins Diagnostic imaging Drug delivery systems Electron microscopy Entanglement Fibers Fourier transforms Hydrogen Hydrogen bonds Infrared spectroscopy Materials research Mats Mechanical properties Microfibers Microscopy Modulus of elasticity Morphology NMR Nuclear magnetic resonance Nuclear magnetic resonance spectroscopy Polyethylene Polyethylenes Polymer industry Polymers Production processes Properties Raman spectroscopy Scaffolds Skin Skin care products Spectroscopy Spectrum analysis Tensile tests Tissue engineering Wound care Wound healing Wounds X-ray diffraction |
title | Characterization of mechanically reinforced electrospun dextrin‐polyethylene oxide sub‐microfiber mats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20mechanically%20reinforced%20electrospun%20dextrin%E2%80%90polyethylene%20oxide%20sub%E2%80%90microfiber%20mats&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Rodr%C3%ADguez%E2%80%90Zamora,%20Pen%C3%A9lope&rft.date=2019-09&rft.volume=59&rft.issue=9&rft.spage=1778&rft.epage=1786&rft.pages=1778-1786&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25177&rft_dat=%3Cgale_proqu%3EA600664605%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283387773&rft_id=info:pmid/&rft_galeid=A600664605&rfr_iscdi=true |