Characterization of mechanically reinforced electrospun dextrin‐polyethylene oxide sub‐microfiber mats

Dextrin and dextrin‐polyethylene oxide (DEX/PEO) fibers in the submicron range were produced by electrospinning of single and blend polymer solutions. The morphology, intermolecular interactions, and mechanical properties of dextrin microfibers with and without PEO were characterized by scanning ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2019-09, Vol.59 (9), p.1778-1786
Hauptverfasser: Rodríguez‐Zamora, Penélope, Peña‐Juárez, Ma. Concepción, Cedillo‐Servín, Gerardo, Paloalto‐Landon, Alejandro, Ortega‐García, Iván, Maaza, Malik, Vera‐Graziano, Ricardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1786
container_issue 9
container_start_page 1778
container_title Polymer engineering and science
container_volume 59
creator Rodríguez‐Zamora, Penélope
Peña‐Juárez, Ma. Concepción
Cedillo‐Servín, Gerardo
Paloalto‐Landon, Alejandro
Ortega‐García, Iván
Maaza, Malik
Vera‐Graziano, Ricardo
description Dextrin and dextrin‐polyethylene oxide (DEX/PEO) fibers in the submicron range were produced by electrospinning of single and blend polymer solutions. The morphology, intermolecular interactions, and mechanical properties of dextrin microfibers with and without PEO were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray diffraction, nuclear magnetic resonance spectroscopy, and uniaxial tensile testing. Spectroscopic results confirmed hydrogen bond formation, evidencing dextrin as a molecular entanglement source for fiber mechanical reinforcement. The uniaxial tensile tests demonstrated a synergistic mechanical reinforcement effect that varied with blend composition. Equal weight ratio blends supported a maximum tensile strength with a high elastic modulus and demonstrated to be more elastic and resistant to breaking, even than pristine PEO fibers. Moreover, elastic moduli of blend fiber mats were found to lie within the value range for human skin, thus providing the DEX/PEO meshes with potential applicability as skin tissue scaffolds. This synthesis approach proved the feasible and inexpensive fabrication process of natural‐synthetic polymer hybrid fibers that combine the biocompatibility, biodegradability, and encapsulating capability of dextrin with the mechanical strength and flexibility of PEO for the development of scaffolds for tissue engineering and topical drug delivery applications in skin wound healing. POLYM. ENG. SCI., 59:1778–1786, 2019. © 2019 Society of Plastics Engineers
doi_str_mv 10.1002/pen.25177
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2283387773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A600664605</galeid><sourcerecordid>A600664605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5107-dc5379178c077c2d91751cc70685aad3e79a162ff909082b6495d224105d69083</originalsourceid><addsrcrecordid>eNp1kt9qFDEUxoNYcK1e-AYDXgnONn8mk5nLslRbKCqtXodscmY3y0wyJhna8cpH6DP6JKauoAtbAkk4-X0nOV8OQm8IXhKM6dkIbkk5EeIZWhBeNSWtWfUcLTBmtGRN07xAL2Pc4cwy3i7QbrVVQekEwf5QyXpX-K4YQG-Vs1r1_VwEsK7zQYMpoAedgo_j5AoD9ylY9-vnw-j7GdJ27sFB4e-tgSJO63wwWB18Z9cQikGl-AqddKqP8Prveoq-fbj4urosrz9_vFqdX5eaEyxKozkTLRGNxkJoavKWE60FrhuulGEgWkVq2nUtbnFD13XVckNpRTA3dY6wU_R2n3cM_vsEMcmdn4LLV0pKG8YaIQT7R21UD_KxxJR9GGzU8rzGuK6rGvNMlUeoTa40qN476GwOH_DLI3weBrIbRwXvDgSZSdnZjZpilFe3N4fs-__Y9RStg5inaDfbFPeSY6nzL8QYoJNjsIMKsyRYPjaLzM0i_zRLZs_27F1-3_w0KL9cfNorfgOk18Bx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283387773</pqid></control><display><type>article</type><title>Characterization of mechanically reinforced electrospun dextrin‐polyethylene oxide sub‐microfiber mats</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rodríguez‐Zamora, Penélope ; Peña‐Juárez, Ma. Concepción ; Cedillo‐Servín, Gerardo ; Paloalto‐Landon, Alejandro ; Ortega‐García, Iván ; Maaza, Malik ; Vera‐Graziano, Ricardo</creator><creatorcontrib>Rodríguez‐Zamora, Penélope ; Peña‐Juárez, Ma. Concepción ; Cedillo‐Servín, Gerardo ; Paloalto‐Landon, Alejandro ; Ortega‐García, Iván ; Maaza, Malik ; Vera‐Graziano, Ricardo</creatorcontrib><description>Dextrin and dextrin‐polyethylene oxide (DEX/PEO) fibers in the submicron range were produced by electrospinning of single and blend polymer solutions. The morphology, intermolecular interactions, and mechanical properties of dextrin microfibers with and without PEO were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray diffraction, nuclear magnetic resonance spectroscopy, and uniaxial tensile testing. Spectroscopic results confirmed hydrogen bond formation, evidencing dextrin as a molecular entanglement source for fiber mechanical reinforcement. The uniaxial tensile tests demonstrated a synergistic mechanical reinforcement effect that varied with blend composition. Equal weight ratio blends supported a maximum tensile strength with a high elastic modulus and demonstrated to be more elastic and resistant to breaking, even than pristine PEO fibers. Moreover, elastic moduli of blend fiber mats were found to lie within the value range for human skin, thus providing the DEX/PEO meshes with potential applicability as skin tissue scaffolds. This synthesis approach proved the feasible and inexpensive fabrication process of natural‐synthetic polymer hybrid fibers that combine the biocompatibility, biodegradability, and encapsulating capability of dextrin with the mechanical strength and flexibility of PEO for the development of scaffolds for tissue engineering and topical drug delivery applications in skin wound healing. POLYM. ENG. SCI., 59:1778–1786, 2019. © 2019 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25177</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Biocompatibility ; Biodegradability ; Composition ; Dermatologic agents ; Dextrin ; Dextrins ; Diagnostic imaging ; Drug delivery systems ; Electron microscopy ; Entanglement ; Fibers ; Fourier transforms ; Hydrogen ; Hydrogen bonds ; Infrared spectroscopy ; Materials research ; Mats ; Mechanical properties ; Microfibers ; Microscopy ; Modulus of elasticity ; Morphology ; NMR ; Nuclear magnetic resonance ; Nuclear magnetic resonance spectroscopy ; Polyethylene ; Polyethylenes ; Polymer industry ; Polymers ; Production processes ; Properties ; Raman spectroscopy ; Scaffolds ; Skin ; Skin care products ; Spectroscopy ; Spectrum analysis ; Tensile tests ; Tissue engineering ; Wound care ; Wound healing ; Wounds ; X-ray diffraction</subject><ispartof>Polymer engineering and science, 2019-09, Vol.59 (9), p.1778-1786</ispartof><rights>2019 Society of Plastics Engineers</rights><rights>COPYRIGHT 2019 Society of Plastics Engineers, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5107-dc5379178c077c2d91751cc70685aad3e79a162ff909082b6495d224105d69083</citedby><cites>FETCH-LOGICAL-c5107-dc5379178c077c2d91751cc70685aad3e79a162ff909082b6495d224105d69083</cites><orcidid>0000-0002-0963-7046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Rodríguez‐Zamora, Penélope</creatorcontrib><creatorcontrib>Peña‐Juárez, Ma. Concepción</creatorcontrib><creatorcontrib>Cedillo‐Servín, Gerardo</creatorcontrib><creatorcontrib>Paloalto‐Landon, Alejandro</creatorcontrib><creatorcontrib>Ortega‐García, Iván</creatorcontrib><creatorcontrib>Maaza, Malik</creatorcontrib><creatorcontrib>Vera‐Graziano, Ricardo</creatorcontrib><title>Characterization of mechanically reinforced electrospun dextrin‐polyethylene oxide sub‐microfiber mats</title><title>Polymer engineering and science</title><description>Dextrin and dextrin‐polyethylene oxide (DEX/PEO) fibers in the submicron range were produced by electrospinning of single and blend polymer solutions. The morphology, intermolecular interactions, and mechanical properties of dextrin microfibers with and without PEO were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray diffraction, nuclear magnetic resonance spectroscopy, and uniaxial tensile testing. Spectroscopic results confirmed hydrogen bond formation, evidencing dextrin as a molecular entanglement source for fiber mechanical reinforcement. The uniaxial tensile tests demonstrated a synergistic mechanical reinforcement effect that varied with blend composition. Equal weight ratio blends supported a maximum tensile strength with a high elastic modulus and demonstrated to be more elastic and resistant to breaking, even than pristine PEO fibers. Moreover, elastic moduli of blend fiber mats were found to lie within the value range for human skin, thus providing the DEX/PEO meshes with potential applicability as skin tissue scaffolds. This synthesis approach proved the feasible and inexpensive fabrication process of natural‐synthetic polymer hybrid fibers that combine the biocompatibility, biodegradability, and encapsulating capability of dextrin with the mechanical strength and flexibility of PEO for the development of scaffolds for tissue engineering and topical drug delivery applications in skin wound healing. POLYM. ENG. SCI., 59:1778–1786, 2019. © 2019 Society of Plastics Engineers</description><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Composition</subject><subject>Dermatologic agents</subject><subject>Dextrin</subject><subject>Dextrins</subject><subject>Diagnostic imaging</subject><subject>Drug delivery systems</subject><subject>Electron microscopy</subject><subject>Entanglement</subject><subject>Fibers</subject><subject>Fourier transforms</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>Infrared spectroscopy</subject><subject>Materials research</subject><subject>Mats</subject><subject>Mechanical properties</subject><subject>Microfibers</subject><subject>Microscopy</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear magnetic resonance spectroscopy</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Polymer industry</subject><subject>Polymers</subject><subject>Production processes</subject><subject>Properties</subject><subject>Raman spectroscopy</subject><subject>Scaffolds</subject><subject>Skin</subject><subject>Skin care products</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Tensile tests</subject><subject>Tissue engineering</subject><subject>Wound care</subject><subject>Wound healing</subject><subject>Wounds</subject><subject>X-ray diffraction</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kt9qFDEUxoNYcK1e-AYDXgnONn8mk5nLslRbKCqtXodscmY3y0wyJhna8cpH6DP6JKauoAtbAkk4-X0nOV8OQm8IXhKM6dkIbkk5EeIZWhBeNSWtWfUcLTBmtGRN07xAL2Pc4cwy3i7QbrVVQekEwf5QyXpX-K4YQG-Vs1r1_VwEsK7zQYMpoAedgo_j5AoD9ylY9-vnw-j7GdJ27sFB4e-tgSJO63wwWB18Z9cQikGl-AqddKqP8Prveoq-fbj4urosrz9_vFqdX5eaEyxKozkTLRGNxkJoavKWE60FrhuulGEgWkVq2nUtbnFD13XVckNpRTA3dY6wU_R2n3cM_vsEMcmdn4LLV0pKG8YaIQT7R21UD_KxxJR9GGzU8rzGuK6rGvNMlUeoTa40qN476GwOH_DLI3weBrIbRwXvDgSZSdnZjZpilFe3N4fs-__Y9RStg5inaDfbFPeSY6nzL8QYoJNjsIMKsyRYPjaLzM0i_zRLZs_27F1-3_w0KL9cfNorfgOk18Bx</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Rodríguez‐Zamora, Penélope</creator><creator>Peña‐Juárez, Ma. Concepción</creator><creator>Cedillo‐Servín, Gerardo</creator><creator>Paloalto‐Landon, Alejandro</creator><creator>Ortega‐García, Iván</creator><creator>Maaza, Malik</creator><creator>Vera‐Graziano, Ricardo</creator><general>John Wiley &amp; Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0963-7046</orcidid></search><sort><creationdate>201909</creationdate><title>Characterization of mechanically reinforced electrospun dextrin‐polyethylene oxide sub‐microfiber mats</title><author>Rodríguez‐Zamora, Penélope ; Peña‐Juárez, Ma. Concepción ; Cedillo‐Servín, Gerardo ; Paloalto‐Landon, Alejandro ; Ortega‐García, Iván ; Maaza, Malik ; Vera‐Graziano, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5107-dc5379178c077c2d91751cc70685aad3e79a162ff909082b6495d224105d69083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Composition</topic><topic>Dermatologic agents</topic><topic>Dextrin</topic><topic>Dextrins</topic><topic>Diagnostic imaging</topic><topic>Drug delivery systems</topic><topic>Electron microscopy</topic><topic>Entanglement</topic><topic>Fibers</topic><topic>Fourier transforms</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>Infrared spectroscopy</topic><topic>Materials research</topic><topic>Mats</topic><topic>Mechanical properties</topic><topic>Microfibers</topic><topic>Microscopy</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear magnetic resonance spectroscopy</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Polymer industry</topic><topic>Polymers</topic><topic>Production processes</topic><topic>Properties</topic><topic>Raman spectroscopy</topic><topic>Scaffolds</topic><topic>Skin</topic><topic>Skin care products</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Tensile tests</topic><topic>Tissue engineering</topic><topic>Wound care</topic><topic>Wound healing</topic><topic>Wounds</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez‐Zamora, Penélope</creatorcontrib><creatorcontrib>Peña‐Juárez, Ma. Concepción</creatorcontrib><creatorcontrib>Cedillo‐Servín, Gerardo</creatorcontrib><creatorcontrib>Paloalto‐Landon, Alejandro</creatorcontrib><creatorcontrib>Ortega‐García, Iván</creatorcontrib><creatorcontrib>Maaza, Malik</creatorcontrib><creatorcontrib>Vera‐Graziano, Ricardo</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez‐Zamora, Penélope</au><au>Peña‐Juárez, Ma. Concepción</au><au>Cedillo‐Servín, Gerardo</au><au>Paloalto‐Landon, Alejandro</au><au>Ortega‐García, Iván</au><au>Maaza, Malik</au><au>Vera‐Graziano, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of mechanically reinforced electrospun dextrin‐polyethylene oxide sub‐microfiber mats</atitle><jtitle>Polymer engineering and science</jtitle><date>2019-09</date><risdate>2019</risdate><volume>59</volume><issue>9</issue><spage>1778</spage><epage>1786</epage><pages>1778-1786</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>Dextrin and dextrin‐polyethylene oxide (DEX/PEO) fibers in the submicron range were produced by electrospinning of single and blend polymer solutions. The morphology, intermolecular interactions, and mechanical properties of dextrin microfibers with and without PEO were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray diffraction, nuclear magnetic resonance spectroscopy, and uniaxial tensile testing. Spectroscopic results confirmed hydrogen bond formation, evidencing dextrin as a molecular entanglement source for fiber mechanical reinforcement. The uniaxial tensile tests demonstrated a synergistic mechanical reinforcement effect that varied with blend composition. Equal weight ratio blends supported a maximum tensile strength with a high elastic modulus and demonstrated to be more elastic and resistant to breaking, even than pristine PEO fibers. Moreover, elastic moduli of blend fiber mats were found to lie within the value range for human skin, thus providing the DEX/PEO meshes with potential applicability as skin tissue scaffolds. This synthesis approach proved the feasible and inexpensive fabrication process of natural‐synthetic polymer hybrid fibers that combine the biocompatibility, biodegradability, and encapsulating capability of dextrin with the mechanical strength and flexibility of PEO for the development of scaffolds for tissue engineering and topical drug delivery applications in skin wound healing. POLYM. ENG. SCI., 59:1778–1786, 2019. © 2019 Society of Plastics Engineers</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pen.25177</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0963-7046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2019-09, Vol.59 (9), p.1778-1786
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_journals_2283387773
source Wiley Online Library Journals Frontfile Complete
subjects Biocompatibility
Biodegradability
Composition
Dermatologic agents
Dextrin
Dextrins
Diagnostic imaging
Drug delivery systems
Electron microscopy
Entanglement
Fibers
Fourier transforms
Hydrogen
Hydrogen bonds
Infrared spectroscopy
Materials research
Mats
Mechanical properties
Microfibers
Microscopy
Modulus of elasticity
Morphology
NMR
Nuclear magnetic resonance
Nuclear magnetic resonance spectroscopy
Polyethylene
Polyethylenes
Polymer industry
Polymers
Production processes
Properties
Raman spectroscopy
Scaffolds
Skin
Skin care products
Spectroscopy
Spectrum analysis
Tensile tests
Tissue engineering
Wound care
Wound healing
Wounds
X-ray diffraction
title Characterization of mechanically reinforced electrospun dextrin‐polyethylene oxide sub‐microfiber mats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20mechanically%20reinforced%20electrospun%20dextrin%E2%80%90polyethylene%20oxide%20sub%E2%80%90microfiber%20mats&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Rodr%C3%ADguez%E2%80%90Zamora,%20Pen%C3%A9lope&rft.date=2019-09&rft.volume=59&rft.issue=9&rft.spage=1778&rft.epage=1786&rft.pages=1778-1786&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25177&rft_dat=%3Cgale_proqu%3EA600664605%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283387773&rft_id=info:pmid/&rft_galeid=A600664605&rfr_iscdi=true