Opposite effects of winter day and night temperature changes on early phenophases
Changes in day (maximum temperature, T MAX) and night temperature (minimum temperature, T MIN) in the preseason (e.g., winter and spring) may have opposite effects on early phenophases (e.g., leafing and flowering) due to changing requirements of chilling accumulations (CAC) and heating accumulation...
Gespeichert in:
Veröffentlicht in: | Ecology (Durham) 2019-09, Vol.100 (9), p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | Ecology (Durham) |
container_volume | 100 |
creator | Meng, Fandong Zhang, Lirong Zhang, Zhenhua Jiang, Lili Wang, Yanfen Duan, Jichuang Wang, Qi Li, Bowen Liu, Peipei Hong, Huan Lv, Wangwang Renzeng, Wangmu Wang, Zhezhen Luo, Caiyun Dorji, Tsechoe Zhou, Huakun Du, Mingyuan Wang, Shiping |
description | Changes in day (maximum temperature, T
MAX) and night temperature (minimum temperature, T
MIN) in the preseason (e.g., winter and spring) may have opposite effects on early phenophases (e.g., leafing and flowering) due to changing requirements of chilling accumulations (CAC) and heating accumulations (HAC), which could cause advance, delay or no change in early phenophases. However, their relative effects on phenology are largely unexplored, especially on the Tibetan Plateau. Here, observations were performed using a warming and cooling experiment in situ through reciprocal transplantation (2008–2010) on the Tibetan Plateau. We found that winter minimum temperature (T
MIN) warming significantly delayed mean early phenophases by 8.60 d/°C, but winter maximum temperature (T
MAX) warming advanced them by 12.06 d/°C across six common species. Thus, winter mean temperature warming resulted in a net advance of 3.46 d/°C in early phenophases. In contrast, winter T
MIN cooling, on average, significantly advanced early phenophases by 5.12 d/°C, but winter T
MAX cooling delayed them by 7.40 d/°C across six common species, resulting in a net delay of 2.28 d/°C for winter mean temperature cooling. The opposing effects of T
MAX and T
MIN warming on the early phenophases may be mainly caused by decreased CAC due to T
MIN warming (5.29 times greater than T
MAX) and increased HAC due to T
MAX warming (3.25 times greater than T
MIN), and similar processes apply to T
MAX and T
MIN cooling. Therefore, our study provides another insight into why some plant phenophases remain unchanged or delayed under climate change. |
doi_str_mv | 10.1002/ecy.2775 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2283380511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26785435</jstor_id><sourcerecordid>26785435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4155-5a729ca0af49fe47004410ff6c36f591fd2fc82133f48cf9470e3472721638f03</originalsourceid><addsrcrecordid>eNp10M1LwzAYx_Egis4p-A8oAS9eOvPaNEcZ8wUGQ9CDpxDTJ1vH1takZfS_t6NzN3PJ5cP3gR9CN5RMKCHsEVw3YUrJEzSimutEU0VO0YgQyhKdyuwCXca4Jv2jIjtHF5zSVGsiRuh9UddVLBrA4D24JuLK411RNhBwbjtsyxyXxXLV4Aa2NQTbtAGwW9lyCb0tMdiw6XC9grKqVzZCvEJn3m4iXB_-Mfp8nn1MX5P54uVt-jRPnKBSJtIqpp0l1gvtQShChKDE-9Tx1EtNfc68yxjl3IvMed0L4EIxxWjKM0_4GN0P3TpUPy3ExqyrNpT9ScNYxnlGJKW9ehiUC1WMAbypQ7G1oTOUmP12pt_O7Lfr6d0h2H5vIT_Cv7F6kAxgV2yg-zdkZtOvQ_B28OvYVOHoWaoyKbjkv-yVgJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283380511</pqid></control><display><type>article</type><title>Opposite effects of winter day and night temperature changes on early phenophases</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Meng, Fandong ; Zhang, Lirong ; Zhang, Zhenhua ; Jiang, Lili ; Wang, Yanfen ; Duan, Jichuang ; Wang, Qi ; Li, Bowen ; Liu, Peipei ; Hong, Huan ; Lv, Wangwang ; Renzeng, Wangmu ; Wang, Zhezhen ; Luo, Caiyun ; Dorji, Tsechoe ; Zhou, Huakun ; Du, Mingyuan ; Wang, Shiping</creator><creatorcontrib>Meng, Fandong ; Zhang, Lirong ; Zhang, Zhenhua ; Jiang, Lili ; Wang, Yanfen ; Duan, Jichuang ; Wang, Qi ; Li, Bowen ; Liu, Peipei ; Hong, Huan ; Lv, Wangwang ; Renzeng, Wangmu ; Wang, Zhezhen ; Luo, Caiyun ; Dorji, Tsechoe ; Zhou, Huakun ; Du, Mingyuan ; Wang, Shiping</creatorcontrib><description>Changes in day (maximum temperature, T
MAX) and night temperature (minimum temperature, T
MIN) in the preseason (e.g., winter and spring) may have opposite effects on early phenophases (e.g., leafing and flowering) due to changing requirements of chilling accumulations (CAC) and heating accumulations (HAC), which could cause advance, delay or no change in early phenophases. However, their relative effects on phenology are largely unexplored, especially on the Tibetan Plateau. Here, observations were performed using a warming and cooling experiment in situ through reciprocal transplantation (2008–2010) on the Tibetan Plateau. We found that winter minimum temperature (T
MIN) warming significantly delayed mean early phenophases by 8.60 d/°C, but winter maximum temperature (T
MAX) warming advanced them by 12.06 d/°C across six common species. Thus, winter mean temperature warming resulted in a net advance of 3.46 d/°C in early phenophases. In contrast, winter T
MIN cooling, on average, significantly advanced early phenophases by 5.12 d/°C, but winter T
MAX cooling delayed them by 7.40 d/°C across six common species, resulting in a net delay of 2.28 d/°C for winter mean temperature cooling. The opposing effects of T
MAX and T
MIN warming on the early phenophases may be mainly caused by decreased CAC due to T
MIN warming (5.29 times greater than T
MAX) and increased HAC due to T
MAX warming (3.25 times greater than T
MIN), and similar processes apply to T
MAX and T
MIN cooling. Therefore, our study provides another insight into why some plant phenophases remain unchanged or delayed under climate change.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1002/ecy.2775</identifier><identifier>PMID: 31169904</identifier><language>eng</language><publisher>United States: John Wiley and Sons, Inc</publisher><subject>asymmetrical temperature change at day and night ; Climate Change ; Cold Temperature ; Cooling ; Cooling effects ; Delay ; Flowering ; flowering functional groups ; Night ; plant phenology ; Plants ; Seasons ; Temperature ; Temperature effects ; temperature sensitivity ; Tibetan Plateau ; Transplantation ; warming and cooling ; Winter</subject><ispartof>Ecology (Durham), 2019-09, Vol.100 (9), p.1-8</ispartof><rights>2019 by the Ecological Society of America</rights><rights>2019 by the Ecological Society of America.</rights><rights>2019 Ecological Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4155-5a729ca0af49fe47004410ff6c36f591fd2fc82133f48cf9470e3472721638f03</citedby><cites>FETCH-LOGICAL-c4155-5a729ca0af49fe47004410ff6c36f591fd2fc82133f48cf9470e3472721638f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26785435$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26785435$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31169904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Fandong</creatorcontrib><creatorcontrib>Zhang, Lirong</creatorcontrib><creatorcontrib>Zhang, Zhenhua</creatorcontrib><creatorcontrib>Jiang, Lili</creatorcontrib><creatorcontrib>Wang, Yanfen</creatorcontrib><creatorcontrib>Duan, Jichuang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><creatorcontrib>Liu, Peipei</creatorcontrib><creatorcontrib>Hong, Huan</creatorcontrib><creatorcontrib>Lv, Wangwang</creatorcontrib><creatorcontrib>Renzeng, Wangmu</creatorcontrib><creatorcontrib>Wang, Zhezhen</creatorcontrib><creatorcontrib>Luo, Caiyun</creatorcontrib><creatorcontrib>Dorji, Tsechoe</creatorcontrib><creatorcontrib>Zhou, Huakun</creatorcontrib><creatorcontrib>Du, Mingyuan</creatorcontrib><creatorcontrib>Wang, Shiping</creatorcontrib><title>Opposite effects of winter day and night temperature changes on early phenophases</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Changes in day (maximum temperature, T
MAX) and night temperature (minimum temperature, T
MIN) in the preseason (e.g., winter and spring) may have opposite effects on early phenophases (e.g., leafing and flowering) due to changing requirements of chilling accumulations (CAC) and heating accumulations (HAC), which could cause advance, delay or no change in early phenophases. However, their relative effects on phenology are largely unexplored, especially on the Tibetan Plateau. Here, observations were performed using a warming and cooling experiment in situ through reciprocal transplantation (2008–2010) on the Tibetan Plateau. We found that winter minimum temperature (T
MIN) warming significantly delayed mean early phenophases by 8.60 d/°C, but winter maximum temperature (T
MAX) warming advanced them by 12.06 d/°C across six common species. Thus, winter mean temperature warming resulted in a net advance of 3.46 d/°C in early phenophases. In contrast, winter T
MIN cooling, on average, significantly advanced early phenophases by 5.12 d/°C, but winter T
MAX cooling delayed them by 7.40 d/°C across six common species, resulting in a net delay of 2.28 d/°C for winter mean temperature cooling. The opposing effects of T
MAX and T
MIN warming on the early phenophases may be mainly caused by decreased CAC due to T
MIN warming (5.29 times greater than T
MAX) and increased HAC due to T
MAX warming (3.25 times greater than T
MIN), and similar processes apply to T
MAX and T
MIN cooling. Therefore, our study provides another insight into why some plant phenophases remain unchanged or delayed under climate change.</description><subject>asymmetrical temperature change at day and night</subject><subject>Climate Change</subject><subject>Cold Temperature</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Delay</subject><subject>Flowering</subject><subject>flowering functional groups</subject><subject>Night</subject><subject>plant phenology</subject><subject>Plants</subject><subject>Seasons</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>temperature sensitivity</subject><subject>Tibetan Plateau</subject><subject>Transplantation</subject><subject>warming and cooling</subject><subject>Winter</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10M1LwzAYx_Egis4p-A8oAS9eOvPaNEcZ8wUGQ9CDpxDTJ1vH1takZfS_t6NzN3PJ5cP3gR9CN5RMKCHsEVw3YUrJEzSimutEU0VO0YgQyhKdyuwCXca4Jv2jIjtHF5zSVGsiRuh9UddVLBrA4D24JuLK411RNhBwbjtsyxyXxXLV4Aa2NQTbtAGwW9lyCb0tMdiw6XC9grKqVzZCvEJn3m4iXB_-Mfp8nn1MX5P54uVt-jRPnKBSJtIqpp0l1gvtQShChKDE-9Tx1EtNfc68yxjl3IvMed0L4EIxxWjKM0_4GN0P3TpUPy3ExqyrNpT9ScNYxnlGJKW9ehiUC1WMAbypQ7G1oTOUmP12pt_O7Lfr6d0h2H5vIT_Cv7F6kAxgV2yg-zdkZtOvQ_B28OvYVOHoWaoyKbjkv-yVgJk</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Meng, Fandong</creator><creator>Zhang, Lirong</creator><creator>Zhang, Zhenhua</creator><creator>Jiang, Lili</creator><creator>Wang, Yanfen</creator><creator>Duan, Jichuang</creator><creator>Wang, Qi</creator><creator>Li, Bowen</creator><creator>Liu, Peipei</creator><creator>Hong, Huan</creator><creator>Lv, Wangwang</creator><creator>Renzeng, Wangmu</creator><creator>Wang, Zhezhen</creator><creator>Luo, Caiyun</creator><creator>Dorji, Tsechoe</creator><creator>Zhou, Huakun</creator><creator>Du, Mingyuan</creator><creator>Wang, Shiping</creator><general>John Wiley and Sons, Inc</general><general>Ecological Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20190901</creationdate><title>Opposite effects of winter day and night temperature changes on early phenophases</title><author>Meng, Fandong ; Zhang, Lirong ; Zhang, Zhenhua ; Jiang, Lili ; Wang, Yanfen ; Duan, Jichuang ; Wang, Qi ; Li, Bowen ; Liu, Peipei ; Hong, Huan ; Lv, Wangwang ; Renzeng, Wangmu ; Wang, Zhezhen ; Luo, Caiyun ; Dorji, Tsechoe ; Zhou, Huakun ; Du, Mingyuan ; Wang, Shiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4155-5a729ca0af49fe47004410ff6c36f591fd2fc82133f48cf9470e3472721638f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>asymmetrical temperature change at day and night</topic><topic>Climate Change</topic><topic>Cold Temperature</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Delay</topic><topic>Flowering</topic><topic>flowering functional groups</topic><topic>Night</topic><topic>plant phenology</topic><topic>Plants</topic><topic>Seasons</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>temperature sensitivity</topic><topic>Tibetan Plateau</topic><topic>Transplantation</topic><topic>warming and cooling</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Fandong</creatorcontrib><creatorcontrib>Zhang, Lirong</creatorcontrib><creatorcontrib>Zhang, Zhenhua</creatorcontrib><creatorcontrib>Jiang, Lili</creatorcontrib><creatorcontrib>Wang, Yanfen</creatorcontrib><creatorcontrib>Duan, Jichuang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><creatorcontrib>Liu, Peipei</creatorcontrib><creatorcontrib>Hong, Huan</creatorcontrib><creatorcontrib>Lv, Wangwang</creatorcontrib><creatorcontrib>Renzeng, Wangmu</creatorcontrib><creatorcontrib>Wang, Zhezhen</creatorcontrib><creatorcontrib>Luo, Caiyun</creatorcontrib><creatorcontrib>Dorji, Tsechoe</creatorcontrib><creatorcontrib>Zhou, Huakun</creatorcontrib><creatorcontrib>Du, Mingyuan</creatorcontrib><creatorcontrib>Wang, Shiping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Fandong</au><au>Zhang, Lirong</au><au>Zhang, Zhenhua</au><au>Jiang, Lili</au><au>Wang, Yanfen</au><au>Duan, Jichuang</au><au>Wang, Qi</au><au>Li, Bowen</au><au>Liu, Peipei</au><au>Hong, Huan</au><au>Lv, Wangwang</au><au>Renzeng, Wangmu</au><au>Wang, Zhezhen</au><au>Luo, Caiyun</au><au>Dorji, Tsechoe</au><au>Zhou, Huakun</au><au>Du, Mingyuan</au><au>Wang, Shiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opposite effects of winter day and night temperature changes on early phenophases</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>100</volume><issue>9</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><abstract>Changes in day (maximum temperature, T
MAX) and night temperature (minimum temperature, T
MIN) in the preseason (e.g., winter and spring) may have opposite effects on early phenophases (e.g., leafing and flowering) due to changing requirements of chilling accumulations (CAC) and heating accumulations (HAC), which could cause advance, delay or no change in early phenophases. However, their relative effects on phenology are largely unexplored, especially on the Tibetan Plateau. Here, observations were performed using a warming and cooling experiment in situ through reciprocal transplantation (2008–2010) on the Tibetan Plateau. We found that winter minimum temperature (T
MIN) warming significantly delayed mean early phenophases by 8.60 d/°C, but winter maximum temperature (T
MAX) warming advanced them by 12.06 d/°C across six common species. Thus, winter mean temperature warming resulted in a net advance of 3.46 d/°C in early phenophases. In contrast, winter T
MIN cooling, on average, significantly advanced early phenophases by 5.12 d/°C, but winter T
MAX cooling delayed them by 7.40 d/°C across six common species, resulting in a net delay of 2.28 d/°C for winter mean temperature cooling. The opposing effects of T
MAX and T
MIN warming on the early phenophases may be mainly caused by decreased CAC due to T
MIN warming (5.29 times greater than T
MAX) and increased HAC due to T
MAX warming (3.25 times greater than T
MIN), and similar processes apply to T
MAX and T
MIN cooling. Therefore, our study provides another insight into why some plant phenophases remain unchanged or delayed under climate change.</abstract><cop>United States</cop><pub>John Wiley and Sons, Inc</pub><pmid>31169904</pmid><doi>10.1002/ecy.2775</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9658 |
ispartof | Ecology (Durham), 2019-09, Vol.100 (9), p.1-8 |
issn | 0012-9658 1939-9170 |
language | eng |
recordid | cdi_proquest_journals_2283380511 |
source | MEDLINE; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing |
subjects | asymmetrical temperature change at day and night Climate Change Cold Temperature Cooling Cooling effects Delay Flowering flowering functional groups Night plant phenology Plants Seasons Temperature Temperature effects temperature sensitivity Tibetan Plateau Transplantation warming and cooling Winter |
title | Opposite effects of winter day and night temperature changes on early phenophases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opposite%20effects%20of%20winter%20day%20and%20night%20temperature%20changes%20on%20early%20phenophases&rft.jtitle=Ecology%20(Durham)&rft.au=Meng,%20Fandong&rft.date=2019-09-01&rft.volume=100&rft.issue=9&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0012-9658&rft.eissn=1939-9170&rft_id=info:doi/10.1002/ecy.2775&rft_dat=%3Cjstor_proqu%3E26785435%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283380511&rft_id=info:pmid/31169904&rft_jstor_id=26785435&rfr_iscdi=true |