Opposite effects of winter day and night temperature changes on early phenophases

Changes in day (maximum temperature, T MAX) and night temperature (minimum temperature, T MIN) in the preseason (e.g., winter and spring) may have opposite effects on early phenophases (e.g., leafing and flowering) due to changing requirements of chilling accumulations (CAC) and heating accumulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2019-09, Vol.100 (9), p.1-8
Hauptverfasser: Meng, Fandong, Zhang, Lirong, Zhang, Zhenhua, Jiang, Lili, Wang, Yanfen, Duan, Jichuang, Wang, Qi, Li, Bowen, Liu, Peipei, Hong, Huan, Lv, Wangwang, Renzeng, Wangmu, Wang, Zhezhen, Luo, Caiyun, Dorji, Tsechoe, Zhou, Huakun, Du, Mingyuan, Wang, Shiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 9
container_start_page 1
container_title Ecology (Durham)
container_volume 100
creator Meng, Fandong
Zhang, Lirong
Zhang, Zhenhua
Jiang, Lili
Wang, Yanfen
Duan, Jichuang
Wang, Qi
Li, Bowen
Liu, Peipei
Hong, Huan
Lv, Wangwang
Renzeng, Wangmu
Wang, Zhezhen
Luo, Caiyun
Dorji, Tsechoe
Zhou, Huakun
Du, Mingyuan
Wang, Shiping
description Changes in day (maximum temperature, T MAX) and night temperature (minimum temperature, T MIN) in the preseason (e.g., winter and spring) may have opposite effects on early phenophases (e.g., leafing and flowering) due to changing requirements of chilling accumulations (CAC) and heating accumulations (HAC), which could cause advance, delay or no change in early phenophases. However, their relative effects on phenology are largely unexplored, especially on the Tibetan Plateau. Here, observations were performed using a warming and cooling experiment in situ through reciprocal transplantation (2008–2010) on the Tibetan Plateau. We found that winter minimum temperature (T MIN) warming significantly delayed mean early phenophases by 8.60 d/°C, but winter maximum temperature (T MAX) warming advanced them by 12.06 d/°C across six common species. Thus, winter mean temperature warming resulted in a net advance of 3.46 d/°C in early phenophases. In contrast, winter T MIN cooling, on average, significantly advanced early phenophases by 5.12 d/°C, but winter T MAX cooling delayed them by 7.40 d/°C across six common species, resulting in a net delay of 2.28 d/°C for winter mean temperature cooling. The opposing effects of T MAX and T MIN warming on the early phenophases may be mainly caused by decreased CAC due to T MIN warming (5.29 times greater than T MAX) and increased HAC due to T MAX warming (3.25 times greater than T MIN), and similar processes apply to T MAX and T MIN cooling. Therefore, our study provides another insight into why some plant phenophases remain unchanged or delayed under climate change.
doi_str_mv 10.1002/ecy.2775
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2283380511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26785435</jstor_id><sourcerecordid>26785435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4155-5a729ca0af49fe47004410ff6c36f591fd2fc82133f48cf9470e3472721638f03</originalsourceid><addsrcrecordid>eNp10M1LwzAYx_Egis4p-A8oAS9eOvPaNEcZ8wUGQ9CDpxDTJ1vH1takZfS_t6NzN3PJ5cP3gR9CN5RMKCHsEVw3YUrJEzSimutEU0VO0YgQyhKdyuwCXca4Jv2jIjtHF5zSVGsiRuh9UddVLBrA4D24JuLK411RNhBwbjtsyxyXxXLV4Aa2NQTbtAGwW9lyCb0tMdiw6XC9grKqVzZCvEJn3m4iXB_-Mfp8nn1MX5P54uVt-jRPnKBSJtIqpp0l1gvtQShChKDE-9Tx1EtNfc68yxjl3IvMed0L4EIxxWjKM0_4GN0P3TpUPy3ExqyrNpT9ScNYxnlGJKW9ehiUC1WMAbypQ7G1oTOUmP12pt_O7Lfr6d0h2H5vIT_Cv7F6kAxgV2yg-zdkZtOvQ_B28OvYVOHoWaoyKbjkv-yVgJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283380511</pqid></control><display><type>article</type><title>Opposite effects of winter day and night temperature changes on early phenophases</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Meng, Fandong ; Zhang, Lirong ; Zhang, Zhenhua ; Jiang, Lili ; Wang, Yanfen ; Duan, Jichuang ; Wang, Qi ; Li, Bowen ; Liu, Peipei ; Hong, Huan ; Lv, Wangwang ; Renzeng, Wangmu ; Wang, Zhezhen ; Luo, Caiyun ; Dorji, Tsechoe ; Zhou, Huakun ; Du, Mingyuan ; Wang, Shiping</creator><creatorcontrib>Meng, Fandong ; Zhang, Lirong ; Zhang, Zhenhua ; Jiang, Lili ; Wang, Yanfen ; Duan, Jichuang ; Wang, Qi ; Li, Bowen ; Liu, Peipei ; Hong, Huan ; Lv, Wangwang ; Renzeng, Wangmu ; Wang, Zhezhen ; Luo, Caiyun ; Dorji, Tsechoe ; Zhou, Huakun ; Du, Mingyuan ; Wang, Shiping</creatorcontrib><description>Changes in day (maximum temperature, T MAX) and night temperature (minimum temperature, T MIN) in the preseason (e.g., winter and spring) may have opposite effects on early phenophases (e.g., leafing and flowering) due to changing requirements of chilling accumulations (CAC) and heating accumulations (HAC), which could cause advance, delay or no change in early phenophases. However, their relative effects on phenology are largely unexplored, especially on the Tibetan Plateau. Here, observations were performed using a warming and cooling experiment in situ through reciprocal transplantation (2008–2010) on the Tibetan Plateau. We found that winter minimum temperature (T MIN) warming significantly delayed mean early phenophases by 8.60 d/°C, but winter maximum temperature (T MAX) warming advanced them by 12.06 d/°C across six common species. Thus, winter mean temperature warming resulted in a net advance of 3.46 d/°C in early phenophases. In contrast, winter T MIN cooling, on average, significantly advanced early phenophases by 5.12 d/°C, but winter T MAX cooling delayed them by 7.40 d/°C across six common species, resulting in a net delay of 2.28 d/°C for winter mean temperature cooling. The opposing effects of T MAX and T MIN warming on the early phenophases may be mainly caused by decreased CAC due to T MIN warming (5.29 times greater than T MAX) and increased HAC due to T MAX warming (3.25 times greater than T MIN), and similar processes apply to T MAX and T MIN cooling. Therefore, our study provides another insight into why some plant phenophases remain unchanged or delayed under climate change.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1002/ecy.2775</identifier><identifier>PMID: 31169904</identifier><language>eng</language><publisher>United States: John Wiley and Sons, Inc</publisher><subject>asymmetrical temperature change at day and night ; Climate Change ; Cold Temperature ; Cooling ; Cooling effects ; Delay ; Flowering ; flowering functional groups ; Night ; plant phenology ; Plants ; Seasons ; Temperature ; Temperature effects ; temperature sensitivity ; Tibetan Plateau ; Transplantation ; warming and cooling ; Winter</subject><ispartof>Ecology (Durham), 2019-09, Vol.100 (9), p.1-8</ispartof><rights>2019 by the Ecological Society of America</rights><rights>2019 by the Ecological Society of America.</rights><rights>2019 Ecological Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4155-5a729ca0af49fe47004410ff6c36f591fd2fc82133f48cf9470e3472721638f03</citedby><cites>FETCH-LOGICAL-c4155-5a729ca0af49fe47004410ff6c36f591fd2fc82133f48cf9470e3472721638f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26785435$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26785435$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31169904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Fandong</creatorcontrib><creatorcontrib>Zhang, Lirong</creatorcontrib><creatorcontrib>Zhang, Zhenhua</creatorcontrib><creatorcontrib>Jiang, Lili</creatorcontrib><creatorcontrib>Wang, Yanfen</creatorcontrib><creatorcontrib>Duan, Jichuang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><creatorcontrib>Liu, Peipei</creatorcontrib><creatorcontrib>Hong, Huan</creatorcontrib><creatorcontrib>Lv, Wangwang</creatorcontrib><creatorcontrib>Renzeng, Wangmu</creatorcontrib><creatorcontrib>Wang, Zhezhen</creatorcontrib><creatorcontrib>Luo, Caiyun</creatorcontrib><creatorcontrib>Dorji, Tsechoe</creatorcontrib><creatorcontrib>Zhou, Huakun</creatorcontrib><creatorcontrib>Du, Mingyuan</creatorcontrib><creatorcontrib>Wang, Shiping</creatorcontrib><title>Opposite effects of winter day and night temperature changes on early phenophases</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Changes in day (maximum temperature, T MAX) and night temperature (minimum temperature, T MIN) in the preseason (e.g., winter and spring) may have opposite effects on early phenophases (e.g., leafing and flowering) due to changing requirements of chilling accumulations (CAC) and heating accumulations (HAC), which could cause advance, delay or no change in early phenophases. However, their relative effects on phenology are largely unexplored, especially on the Tibetan Plateau. Here, observations were performed using a warming and cooling experiment in situ through reciprocal transplantation (2008–2010) on the Tibetan Plateau. We found that winter minimum temperature (T MIN) warming significantly delayed mean early phenophases by 8.60 d/°C, but winter maximum temperature (T MAX) warming advanced them by 12.06 d/°C across six common species. Thus, winter mean temperature warming resulted in a net advance of 3.46 d/°C in early phenophases. In contrast, winter T MIN cooling, on average, significantly advanced early phenophases by 5.12 d/°C, but winter T MAX cooling delayed them by 7.40 d/°C across six common species, resulting in a net delay of 2.28 d/°C for winter mean temperature cooling. The opposing effects of T MAX and T MIN warming on the early phenophases may be mainly caused by decreased CAC due to T MIN warming (5.29 times greater than T MAX) and increased HAC due to T MAX warming (3.25 times greater than T MIN), and similar processes apply to T MAX and T MIN cooling. Therefore, our study provides another insight into why some plant phenophases remain unchanged or delayed under climate change.</description><subject>asymmetrical temperature change at day and night</subject><subject>Climate Change</subject><subject>Cold Temperature</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Delay</subject><subject>Flowering</subject><subject>flowering functional groups</subject><subject>Night</subject><subject>plant phenology</subject><subject>Plants</subject><subject>Seasons</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>temperature sensitivity</subject><subject>Tibetan Plateau</subject><subject>Transplantation</subject><subject>warming and cooling</subject><subject>Winter</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10M1LwzAYx_Egis4p-A8oAS9eOvPaNEcZ8wUGQ9CDpxDTJ1vH1takZfS_t6NzN3PJ5cP3gR9CN5RMKCHsEVw3YUrJEzSimutEU0VO0YgQyhKdyuwCXca4Jv2jIjtHF5zSVGsiRuh9UddVLBrA4D24JuLK411RNhBwbjtsyxyXxXLV4Aa2NQTbtAGwW9lyCb0tMdiw6XC9grKqVzZCvEJn3m4iXB_-Mfp8nn1MX5P54uVt-jRPnKBSJtIqpp0l1gvtQShChKDE-9Tx1EtNfc68yxjl3IvMed0L4EIxxWjKM0_4GN0P3TpUPy3ExqyrNpT9ScNYxnlGJKW9ehiUC1WMAbypQ7G1oTOUmP12pt_O7Lfr6d0h2H5vIT_Cv7F6kAxgV2yg-zdkZtOvQ_B28OvYVOHoWaoyKbjkv-yVgJk</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Meng, Fandong</creator><creator>Zhang, Lirong</creator><creator>Zhang, Zhenhua</creator><creator>Jiang, Lili</creator><creator>Wang, Yanfen</creator><creator>Duan, Jichuang</creator><creator>Wang, Qi</creator><creator>Li, Bowen</creator><creator>Liu, Peipei</creator><creator>Hong, Huan</creator><creator>Lv, Wangwang</creator><creator>Renzeng, Wangmu</creator><creator>Wang, Zhezhen</creator><creator>Luo, Caiyun</creator><creator>Dorji, Tsechoe</creator><creator>Zhou, Huakun</creator><creator>Du, Mingyuan</creator><creator>Wang, Shiping</creator><general>John Wiley and Sons, Inc</general><general>Ecological Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20190901</creationdate><title>Opposite effects of winter day and night temperature changes on early phenophases</title><author>Meng, Fandong ; Zhang, Lirong ; Zhang, Zhenhua ; Jiang, Lili ; Wang, Yanfen ; Duan, Jichuang ; Wang, Qi ; Li, Bowen ; Liu, Peipei ; Hong, Huan ; Lv, Wangwang ; Renzeng, Wangmu ; Wang, Zhezhen ; Luo, Caiyun ; Dorji, Tsechoe ; Zhou, Huakun ; Du, Mingyuan ; Wang, Shiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4155-5a729ca0af49fe47004410ff6c36f591fd2fc82133f48cf9470e3472721638f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>asymmetrical temperature change at day and night</topic><topic>Climate Change</topic><topic>Cold Temperature</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Delay</topic><topic>Flowering</topic><topic>flowering functional groups</topic><topic>Night</topic><topic>plant phenology</topic><topic>Plants</topic><topic>Seasons</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>temperature sensitivity</topic><topic>Tibetan Plateau</topic><topic>Transplantation</topic><topic>warming and cooling</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Fandong</creatorcontrib><creatorcontrib>Zhang, Lirong</creatorcontrib><creatorcontrib>Zhang, Zhenhua</creatorcontrib><creatorcontrib>Jiang, Lili</creatorcontrib><creatorcontrib>Wang, Yanfen</creatorcontrib><creatorcontrib>Duan, Jichuang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><creatorcontrib>Liu, Peipei</creatorcontrib><creatorcontrib>Hong, Huan</creatorcontrib><creatorcontrib>Lv, Wangwang</creatorcontrib><creatorcontrib>Renzeng, Wangmu</creatorcontrib><creatorcontrib>Wang, Zhezhen</creatorcontrib><creatorcontrib>Luo, Caiyun</creatorcontrib><creatorcontrib>Dorji, Tsechoe</creatorcontrib><creatorcontrib>Zhou, Huakun</creatorcontrib><creatorcontrib>Du, Mingyuan</creatorcontrib><creatorcontrib>Wang, Shiping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Fandong</au><au>Zhang, Lirong</au><au>Zhang, Zhenhua</au><au>Jiang, Lili</au><au>Wang, Yanfen</au><au>Duan, Jichuang</au><au>Wang, Qi</au><au>Li, Bowen</au><au>Liu, Peipei</au><au>Hong, Huan</au><au>Lv, Wangwang</au><au>Renzeng, Wangmu</au><au>Wang, Zhezhen</au><au>Luo, Caiyun</au><au>Dorji, Tsechoe</au><au>Zhou, Huakun</au><au>Du, Mingyuan</au><au>Wang, Shiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opposite effects of winter day and night temperature changes on early phenophases</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>100</volume><issue>9</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><abstract>Changes in day (maximum temperature, T MAX) and night temperature (minimum temperature, T MIN) in the preseason (e.g., winter and spring) may have opposite effects on early phenophases (e.g., leafing and flowering) due to changing requirements of chilling accumulations (CAC) and heating accumulations (HAC), which could cause advance, delay or no change in early phenophases. However, their relative effects on phenology are largely unexplored, especially on the Tibetan Plateau. Here, observations were performed using a warming and cooling experiment in situ through reciprocal transplantation (2008–2010) on the Tibetan Plateau. We found that winter minimum temperature (T MIN) warming significantly delayed mean early phenophases by 8.60 d/°C, but winter maximum temperature (T MAX) warming advanced them by 12.06 d/°C across six common species. Thus, winter mean temperature warming resulted in a net advance of 3.46 d/°C in early phenophases. In contrast, winter T MIN cooling, on average, significantly advanced early phenophases by 5.12 d/°C, but winter T MAX cooling delayed them by 7.40 d/°C across six common species, resulting in a net delay of 2.28 d/°C for winter mean temperature cooling. The opposing effects of T MAX and T MIN warming on the early phenophases may be mainly caused by decreased CAC due to T MIN warming (5.29 times greater than T MAX) and increased HAC due to T MAX warming (3.25 times greater than T MIN), and similar processes apply to T MAX and T MIN cooling. Therefore, our study provides another insight into why some plant phenophases remain unchanged or delayed under climate change.</abstract><cop>United States</cop><pub>John Wiley and Sons, Inc</pub><pmid>31169904</pmid><doi>10.1002/ecy.2775</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2019-09, Vol.100 (9), p.1-8
issn 0012-9658
1939-9170
language eng
recordid cdi_proquest_journals_2283380511
source MEDLINE; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing
subjects asymmetrical temperature change at day and night
Climate Change
Cold Temperature
Cooling
Cooling effects
Delay
Flowering
flowering functional groups
Night
plant phenology
Plants
Seasons
Temperature
Temperature effects
temperature sensitivity
Tibetan Plateau
Transplantation
warming and cooling
Winter
title Opposite effects of winter day and night temperature changes on early phenophases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opposite%20effects%20of%20winter%20day%20and%20night%20temperature%20changes%20on%20early%20phenophases&rft.jtitle=Ecology%20(Durham)&rft.au=Meng,%20Fandong&rft.date=2019-09-01&rft.volume=100&rft.issue=9&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0012-9658&rft.eissn=1939-9170&rft_id=info:doi/10.1002/ecy.2775&rft_dat=%3Cjstor_proqu%3E26785435%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283380511&rft_id=info:pmid/31169904&rft_jstor_id=26785435&rfr_iscdi=true