Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification

In this paper, we describe Hydra, an ensemble of convolutional neural networks (CNNs) for geospatial land classification. The idea behind Hydra is to create an initial CNN that is coarsely optimized but provides a good starting pointing for further optimization, which will serve as the Hydra's...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-09, Vol.57 (9), p.6530-6541
Hauptverfasser: Minetto, Rodrigo, Pamplona Segundo, Mauricio, Sarkar, Sudeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6541
container_issue 9
container_start_page 6530
container_title IEEE transactions on geoscience and remote sensing
container_volume 57
creator Minetto, Rodrigo
Pamplona Segundo, Mauricio
Sarkar, Sudeep
description In this paper, we describe Hydra, an ensemble of convolutional neural networks (CNNs) for geospatial land classification. The idea behind Hydra is to create an initial CNN that is coarsely optimized but provides a good starting pointing for further optimization, which will serve as the Hydra's body. Then, the obtained weights are fine-tuned multiple times with different augmentation techniques, crop styles, and classes weights to form an ensemble of CNNs that represent the Hydra's heads. By doing so, we prompt convergence to different endpoints, which is a desirable aspect for ensembles. With this framework, we were able to reduce the training time while maintaining the classification performance of the ensemble. We created ensembles for our experiments using two state-of-the-art CNN architectures, residual network (ResNet), and dense convolutional networks (DenseNet). We have demonstrated the application of our Hydra framework in two data sets, functional map of world (FMOW) and NWPU-RESISC45, achieving results comparable to the state-of-the-art for the former and the best-reported performance so far for the latter. Code and CNN models are available at https://github.com/maups/hydra-fmow .
doi_str_mv 10.1109/TGRS.2019.2906883
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2283327394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8698456</ieee_id><sourcerecordid>2283327394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c95ba88489d3478cc4dc03fddc8f41ee8fea8ae50ecb2d3e5f81a77601e9789e3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7drySz3kqorVAUtHpdtptZSE2zdTdV-u9NrHh6YeZ5h-Eh5JrRCWNU3a3mL68TTpmacEVzAHFCRizLIKW5lKdk1G_ylIPi5-Qixg2lTGasGJH3xaEK5j6ZtsmsjbhdN5h4l5S-_fLNvqt9a5rkCffhN7pvHz5i4nxI5ujjznR1P1-atkrKxsRYu9qaoXRJzpxpIl795Zi8PcxW5SJdPs8fy-kytULkXWpVtjYAElQlZAHWyspS4arKgpMMERwaMJhRtGteCcwcMFMUOWWoClAoxuT2eHcX_OceY6c3fh_6n6PmHITghVCyp9iRssHHGNDpXai3Jhw0o3rQpwd9etCn__T1nZtjp0bEfx5yBTLLxQ-SMGy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283327394</pqid></control><display><type>article</type><title>Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Minetto, Rodrigo ; Pamplona Segundo, Mauricio ; Sarkar, Sudeep</creator><creatorcontrib>Minetto, Rodrigo ; Pamplona Segundo, Mauricio ; Sarkar, Sudeep</creatorcontrib><description>In this paper, we describe Hydra, an ensemble of convolutional neural networks (CNNs) for geospatial land classification. The idea behind Hydra is to create an initial CNN that is coarsely optimized but provides a good starting pointing for further optimization, which will serve as the Hydra's body. Then, the obtained weights are fine-tuned multiple times with different augmentation techniques, crop styles, and classes weights to form an ensemble of CNNs that represent the Hydra's heads. By doing so, we prompt convergence to different endpoints, which is a desirable aspect for ensembles. With this framework, we were able to reduce the training time while maintaining the classification performance of the ensemble. We created ensembles for our experiments using two state-of-the-art CNN architectures, residual network (ResNet), and dense convolutional networks (DenseNet). We have demonstrated the application of our Hydra framework in two data sets, functional map of world (FMOW) and NWPU-RESISC45, achieving results comparable to the state-of-the-art for the former and the best-reported performance so far for the latter. Code and CNN models are available at https://github.com/maups/hydra-fmow .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2019.2906883</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Classification ; Computer architecture ; Convolutional neural network (CNN) ; Convolutional neural networks ; ensemble learning ; functional map of world (FMOW) ; Geospatial analysis ; geospatial land classification ; Head ; Land classification ; Neural networks ; online data augmentation ; Optimization ; remote sensing image classification ; Satellites ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2019-09, Vol.57 (9), p.6530-6541</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c95ba88489d3478cc4dc03fddc8f41ee8fea8ae50ecb2d3e5f81a77601e9789e3</citedby><cites>FETCH-LOGICAL-c336t-c95ba88489d3478cc4dc03fddc8f41ee8fea8ae50ecb2d3e5f81a77601e9789e3</cites><orcidid>0000-0003-4529-5757 ; 0000-0001-7332-4207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8698456$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8698456$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Minetto, Rodrigo</creatorcontrib><creatorcontrib>Pamplona Segundo, Mauricio</creatorcontrib><creatorcontrib>Sarkar, Sudeep</creatorcontrib><title>Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this paper, we describe Hydra, an ensemble of convolutional neural networks (CNNs) for geospatial land classification. The idea behind Hydra is to create an initial CNN that is coarsely optimized but provides a good starting pointing for further optimization, which will serve as the Hydra's body. Then, the obtained weights are fine-tuned multiple times with different augmentation techniques, crop styles, and classes weights to form an ensemble of CNNs that represent the Hydra's heads. By doing so, we prompt convergence to different endpoints, which is a desirable aspect for ensembles. With this framework, we were able to reduce the training time while maintaining the classification performance of the ensemble. We created ensembles for our experiments using two state-of-the-art CNN architectures, residual network (ResNet), and dense convolutional networks (DenseNet). We have demonstrated the application of our Hydra framework in two data sets, functional map of world (FMOW) and NWPU-RESISC45, achieving results comparable to the state-of-the-art for the former and the best-reported performance so far for the latter. Code and CNN models are available at https://github.com/maups/hydra-fmow .</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Convolutional neural network (CNN)</subject><subject>Convolutional neural networks</subject><subject>ensemble learning</subject><subject>functional map of world (FMOW)</subject><subject>Geospatial analysis</subject><subject>geospatial land classification</subject><subject>Head</subject><subject>Land classification</subject><subject>Neural networks</subject><subject>online data augmentation</subject><subject>Optimization</subject><subject>remote sensing image classification</subject><subject>Satellites</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7drySz3kqorVAUtHpdtptZSE2zdTdV-u9NrHh6YeZ5h-Eh5JrRCWNU3a3mL68TTpmacEVzAHFCRizLIKW5lKdk1G_ylIPi5-Qixg2lTGasGJH3xaEK5j6ZtsmsjbhdN5h4l5S-_fLNvqt9a5rkCffhN7pvHz5i4nxI5ujjznR1P1-atkrKxsRYu9qaoXRJzpxpIl795Zi8PcxW5SJdPs8fy-kytULkXWpVtjYAElQlZAHWyspS4arKgpMMERwaMJhRtGteCcwcMFMUOWWoClAoxuT2eHcX_OceY6c3fh_6n6PmHITghVCyp9iRssHHGNDpXai3Jhw0o3rQpwd9etCn__T1nZtjp0bEfx5yBTLLxQ-SMGy8</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Minetto, Rodrigo</creator><creator>Pamplona Segundo, Mauricio</creator><creator>Sarkar, Sudeep</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4529-5757</orcidid><orcidid>https://orcid.org/0000-0001-7332-4207</orcidid></search><sort><creationdate>20190901</creationdate><title>Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification</title><author>Minetto, Rodrigo ; Pamplona Segundo, Mauricio ; Sarkar, Sudeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c95ba88489d3478cc4dc03fddc8f41ee8fea8ae50ecb2d3e5f81a77601e9789e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Convolutional neural network (CNN)</topic><topic>Convolutional neural networks</topic><topic>ensemble learning</topic><topic>functional map of world (FMOW)</topic><topic>Geospatial analysis</topic><topic>geospatial land classification</topic><topic>Head</topic><topic>Land classification</topic><topic>Neural networks</topic><topic>online data augmentation</topic><topic>Optimization</topic><topic>remote sensing image classification</topic><topic>Satellites</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minetto, Rodrigo</creatorcontrib><creatorcontrib>Pamplona Segundo, Mauricio</creatorcontrib><creatorcontrib>Sarkar, Sudeep</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Minetto, Rodrigo</au><au>Pamplona Segundo, Mauricio</au><au>Sarkar, Sudeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>57</volume><issue>9</issue><spage>6530</spage><epage>6541</epage><pages>6530-6541</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this paper, we describe Hydra, an ensemble of convolutional neural networks (CNNs) for geospatial land classification. The idea behind Hydra is to create an initial CNN that is coarsely optimized but provides a good starting pointing for further optimization, which will serve as the Hydra's body. Then, the obtained weights are fine-tuned multiple times with different augmentation techniques, crop styles, and classes weights to form an ensemble of CNNs that represent the Hydra's heads. By doing so, we prompt convergence to different endpoints, which is a desirable aspect for ensembles. With this framework, we were able to reduce the training time while maintaining the classification performance of the ensemble. We created ensembles for our experiments using two state-of-the-art CNN architectures, residual network (ResNet), and dense convolutional networks (DenseNet). We have demonstrated the application of our Hydra framework in two data sets, functional map of world (FMOW) and NWPU-RESISC45, achieving results comparable to the state-of-the-art for the former and the best-reported performance so far for the latter. Code and CNN models are available at https://github.com/maups/hydra-fmow .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2019.2906883</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4529-5757</orcidid><orcidid>https://orcid.org/0000-0001-7332-4207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2019-09, Vol.57 (9), p.6530-6541
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2283327394
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Classification
Computer architecture
Convolutional neural network (CNN)
Convolutional neural networks
ensemble learning
functional map of world (FMOW)
Geospatial analysis
geospatial land classification
Head
Land classification
Neural networks
online data augmentation
Optimization
remote sensing image classification
Satellites
Training
title Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydra:%20An%20Ensemble%20of%20Convolutional%20Neural%20Networks%20for%20Geospatial%20Land%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Minetto,%20Rodrigo&rft.date=2019-09-01&rft.volume=57&rft.issue=9&rft.spage=6530&rft.epage=6541&rft.pages=6530-6541&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2019.2906883&rft_dat=%3Cproquest_RIE%3E2283327394%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283327394&rft_id=info:pmid/&rft_ieee_id=8698456&rfr_iscdi=true