Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification
In this paper, we describe Hydra, an ensemble of convolutional neural networks (CNNs) for geospatial land classification. The idea behind Hydra is to create an initial CNN that is coarsely optimized but provides a good starting pointing for further optimization, which will serve as the Hydra's...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2019-09, Vol.57 (9), p.6530-6541 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6541 |
---|---|
container_issue | 9 |
container_start_page | 6530 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 57 |
creator | Minetto, Rodrigo Pamplona Segundo, Mauricio Sarkar, Sudeep |
description | In this paper, we describe Hydra, an ensemble of convolutional neural networks (CNNs) for geospatial land classification. The idea behind Hydra is to create an initial CNN that is coarsely optimized but provides a good starting pointing for further optimization, which will serve as the Hydra's body. Then, the obtained weights are fine-tuned multiple times with different augmentation techniques, crop styles, and classes weights to form an ensemble of CNNs that represent the Hydra's heads. By doing so, we prompt convergence to different endpoints, which is a desirable aspect for ensembles. With this framework, we were able to reduce the training time while maintaining the classification performance of the ensemble. We created ensembles for our experiments using two state-of-the-art CNN architectures, residual network (ResNet), and dense convolutional networks (DenseNet). We have demonstrated the application of our Hydra framework in two data sets, functional map of world (FMOW) and NWPU-RESISC45, achieving results comparable to the state-of-the-art for the former and the best-reported performance so far for the latter. Code and CNN models are available at https://github.com/maups/hydra-fmow . |
doi_str_mv | 10.1109/TGRS.2019.2906883 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2283327394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8698456</ieee_id><sourcerecordid>2283327394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c95ba88489d3478cc4dc03fddc8f41ee8fea8ae50ecb2d3e5f81a77601e9789e3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7drySz3kqorVAUtHpdtptZSE2zdTdV-u9NrHh6YeZ5h-Eh5JrRCWNU3a3mL68TTpmacEVzAHFCRizLIKW5lKdk1G_ylIPi5-Qixg2lTGasGJH3xaEK5j6ZtsmsjbhdN5h4l5S-_fLNvqt9a5rkCffhN7pvHz5i4nxI5ujjznR1P1-atkrKxsRYu9qaoXRJzpxpIl795Zi8PcxW5SJdPs8fy-kytULkXWpVtjYAElQlZAHWyspS4arKgpMMERwaMJhRtGteCcwcMFMUOWWoClAoxuT2eHcX_OceY6c3fh_6n6PmHITghVCyp9iRssHHGNDpXai3Jhw0o3rQpwd9etCn__T1nZtjp0bEfx5yBTLLxQ-SMGy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283327394</pqid></control><display><type>article</type><title>Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Minetto, Rodrigo ; Pamplona Segundo, Mauricio ; Sarkar, Sudeep</creator><creatorcontrib>Minetto, Rodrigo ; Pamplona Segundo, Mauricio ; Sarkar, Sudeep</creatorcontrib><description>In this paper, we describe Hydra, an ensemble of convolutional neural networks (CNNs) for geospatial land classification. The idea behind Hydra is to create an initial CNN that is coarsely optimized but provides a good starting pointing for further optimization, which will serve as the Hydra's body. Then, the obtained weights are fine-tuned multiple times with different augmentation techniques, crop styles, and classes weights to form an ensemble of CNNs that represent the Hydra's heads. By doing so, we prompt convergence to different endpoints, which is a desirable aspect for ensembles. With this framework, we were able to reduce the training time while maintaining the classification performance of the ensemble. We created ensembles for our experiments using two state-of-the-art CNN architectures, residual network (ResNet), and dense convolutional networks (DenseNet). We have demonstrated the application of our Hydra framework in two data sets, functional map of world (FMOW) and NWPU-RESISC45, achieving results comparable to the state-of-the-art for the former and the best-reported performance so far for the latter. Code and CNN models are available at https://github.com/maups/hydra-fmow .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2019.2906883</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Classification ; Computer architecture ; Convolutional neural network (CNN) ; Convolutional neural networks ; ensemble learning ; functional map of world (FMOW) ; Geospatial analysis ; geospatial land classification ; Head ; Land classification ; Neural networks ; online data augmentation ; Optimization ; remote sensing image classification ; Satellites ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2019-09, Vol.57 (9), p.6530-6541</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c95ba88489d3478cc4dc03fddc8f41ee8fea8ae50ecb2d3e5f81a77601e9789e3</citedby><cites>FETCH-LOGICAL-c336t-c95ba88489d3478cc4dc03fddc8f41ee8fea8ae50ecb2d3e5f81a77601e9789e3</cites><orcidid>0000-0003-4529-5757 ; 0000-0001-7332-4207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8698456$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8698456$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Minetto, Rodrigo</creatorcontrib><creatorcontrib>Pamplona Segundo, Mauricio</creatorcontrib><creatorcontrib>Sarkar, Sudeep</creatorcontrib><title>Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this paper, we describe Hydra, an ensemble of convolutional neural networks (CNNs) for geospatial land classification. The idea behind Hydra is to create an initial CNN that is coarsely optimized but provides a good starting pointing for further optimization, which will serve as the Hydra's body. Then, the obtained weights are fine-tuned multiple times with different augmentation techniques, crop styles, and classes weights to form an ensemble of CNNs that represent the Hydra's heads. By doing so, we prompt convergence to different endpoints, which is a desirable aspect for ensembles. With this framework, we were able to reduce the training time while maintaining the classification performance of the ensemble. We created ensembles for our experiments using two state-of-the-art CNN architectures, residual network (ResNet), and dense convolutional networks (DenseNet). We have demonstrated the application of our Hydra framework in two data sets, functional map of world (FMOW) and NWPU-RESISC45, achieving results comparable to the state-of-the-art for the former and the best-reported performance so far for the latter. Code and CNN models are available at https://github.com/maups/hydra-fmow .</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Convolutional neural network (CNN)</subject><subject>Convolutional neural networks</subject><subject>ensemble learning</subject><subject>functional map of world (FMOW)</subject><subject>Geospatial analysis</subject><subject>geospatial land classification</subject><subject>Head</subject><subject>Land classification</subject><subject>Neural networks</subject><subject>online data augmentation</subject><subject>Optimization</subject><subject>remote sensing image classification</subject><subject>Satellites</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7drySz3kqorVAUtHpdtptZSE2zdTdV-u9NrHh6YeZ5h-Eh5JrRCWNU3a3mL68TTpmacEVzAHFCRizLIKW5lKdk1G_ylIPi5-Qixg2lTGasGJH3xaEK5j6ZtsmsjbhdN5h4l5S-_fLNvqt9a5rkCffhN7pvHz5i4nxI5ujjznR1P1-atkrKxsRYu9qaoXRJzpxpIl795Zi8PcxW5SJdPs8fy-kytULkXWpVtjYAElQlZAHWyspS4arKgpMMERwaMJhRtGteCcwcMFMUOWWoClAoxuT2eHcX_OceY6c3fh_6n6PmHITghVCyp9iRssHHGNDpXai3Jhw0o3rQpwd9etCn__T1nZtjp0bEfx5yBTLLxQ-SMGy8</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Minetto, Rodrigo</creator><creator>Pamplona Segundo, Mauricio</creator><creator>Sarkar, Sudeep</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4529-5757</orcidid><orcidid>https://orcid.org/0000-0001-7332-4207</orcidid></search><sort><creationdate>20190901</creationdate><title>Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification</title><author>Minetto, Rodrigo ; Pamplona Segundo, Mauricio ; Sarkar, Sudeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c95ba88489d3478cc4dc03fddc8f41ee8fea8ae50ecb2d3e5f81a77601e9789e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Convolutional neural network (CNN)</topic><topic>Convolutional neural networks</topic><topic>ensemble learning</topic><topic>functional map of world (FMOW)</topic><topic>Geospatial analysis</topic><topic>geospatial land classification</topic><topic>Head</topic><topic>Land classification</topic><topic>Neural networks</topic><topic>online data augmentation</topic><topic>Optimization</topic><topic>remote sensing image classification</topic><topic>Satellites</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minetto, Rodrigo</creatorcontrib><creatorcontrib>Pamplona Segundo, Mauricio</creatorcontrib><creatorcontrib>Sarkar, Sudeep</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Minetto, Rodrigo</au><au>Pamplona Segundo, Mauricio</au><au>Sarkar, Sudeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>57</volume><issue>9</issue><spage>6530</spage><epage>6541</epage><pages>6530-6541</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this paper, we describe Hydra, an ensemble of convolutional neural networks (CNNs) for geospatial land classification. The idea behind Hydra is to create an initial CNN that is coarsely optimized but provides a good starting pointing for further optimization, which will serve as the Hydra's body. Then, the obtained weights are fine-tuned multiple times with different augmentation techniques, crop styles, and classes weights to form an ensemble of CNNs that represent the Hydra's heads. By doing so, we prompt convergence to different endpoints, which is a desirable aspect for ensembles. With this framework, we were able to reduce the training time while maintaining the classification performance of the ensemble. We created ensembles for our experiments using two state-of-the-art CNN architectures, residual network (ResNet), and dense convolutional networks (DenseNet). We have demonstrated the application of our Hydra framework in two data sets, functional map of world (FMOW) and NWPU-RESISC45, achieving results comparable to the state-of-the-art for the former and the best-reported performance so far for the latter. Code and CNN models are available at https://github.com/maups/hydra-fmow .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2019.2906883</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4529-5757</orcidid><orcidid>https://orcid.org/0000-0001-7332-4207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2019-09, Vol.57 (9), p.6530-6541 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2283327394 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Classification Computer architecture Convolutional neural network (CNN) Convolutional neural networks ensemble learning functional map of world (FMOW) Geospatial analysis geospatial land classification Head Land classification Neural networks online data augmentation Optimization remote sensing image classification Satellites Training |
title | Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydra:%20An%20Ensemble%20of%20Convolutional%20Neural%20Networks%20for%20Geospatial%20Land%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Minetto,%20Rodrigo&rft.date=2019-09-01&rft.volume=57&rft.issue=9&rft.spage=6530&rft.epage=6541&rft.pages=6530-6541&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2019.2906883&rft_dat=%3Cproquest_RIE%3E2283327394%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283327394&rft_id=info:pmid/&rft_ieee_id=8698456&rfr_iscdi=true |