Effects of reactive oxidants generation and capacitance on photoelectrochemical water disinfection with self-doped titanium dioxide nanotube arrays

[Display omitted] •Self-doped anatase (bl-TNT) and amorphous TiO2 nanotube (bk-TNT) were interrogated.•Lower double layer capacitance of bl-TNT led to higher PEC disinfection of E. coli.•PEC bactericidal rates in tap water were similar or greater than in Na2SO4 solution.•Electrostatic interaction be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2019-11, Vol.257, p.117910, Article 117910
Hauptverfasser: Cho, Kangwoo, Lee, Seonggeun, Kim, Hyeonjeong, Kim, Hyung-Eun, Son, Aseom, Kim, Eun-ju, Li, Mengkai, Qiang, Zhimin, Hong, Seok Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117910
container_title Applied catalysis. B, Environmental
container_volume 257
creator Cho, Kangwoo
Lee, Seonggeun
Kim, Hyeonjeong
Kim, Hyung-Eun
Son, Aseom
Kim, Eun-ju
Li, Mengkai
Qiang, Zhimin
Hong, Seok Won
description [Display omitted] •Self-doped anatase (bl-TNT) and amorphous TiO2 nanotube (bk-TNT) were interrogated.•Lower double layer capacitance of bl-TNT led to higher PEC disinfection of E. coli.•PEC bactericidal rates in tap water were similar or greater than in Na2SO4 solution.•Electrostatic interaction between photoanode and bio-solids determined the kinetics.•Commercial applicability for point-of-use disinfection was demonstrated. We herein provide photoelectrochemical (PEC) disinfection activities of anodically prepared TiO2 nanotube (TNT) arrays (diameter ˜ 100 nm, length ˜ 16 μm on average) that were electrochemically self-doped before (bk-TNT) and after (bl-TNT) an atmospheric annealing at 450 °C. The X-ray diffraction indicated predominating anatase TiO2 signal on bl-TNT, while substantial lattice distortion was noticed for bk-TNT. Although the X-ray photoelectron spectra indicated negligible Ti3+ on surface of both TNTs, linear sweep (cyclic) voltammetry and electrochemical impedance spectrometry confirmed the bk-TNT to show greater double layer capacitance and overall photocurrent, coupled with lower charge transfer resistance. Nevertheless, the PEC disinfection of E. coli was significantly invigorated on bl-TNT, while the bactericidal rates in tap water were comparable or even far greater than those in 0.1 M Na2SO4 solutions, depending on [E. coli]0 (105 or 107 CFU/mL). Under a presumed diffusion-controlled kinetic regime in this study, observed effects of capacitance and electrolyte could be interpreted in terms of electrostatic interaction between the electrical double layer of photoanodes and charged bio-solids, such as repulsion by co-ions (SO42−) and adsorption/surface blocking. Analogous PEC experiments on model organic compounds degradation (4-chlorophenol and methylene blue) corroborated a long-term stability of the bl-TNT (up to 30 consecutive cycles) and the role of surface hydroxyl radical as the primary oxidant.
doi_str_mv 10.1016/j.apcatb.2019.117910
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2283285225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337319306563</els_id><sourcerecordid>2283285225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-34868703322f6e9aa0ca9f67a130810135783d6125d69795124a57e20f06f68c3</originalsourceid><addsrcrecordid>eNp9kMtqHDEQRYVJwBMnf5CFIOue6DEtqTeBYJzEYMgmWYuyVPJomJE6ksaOv8M_HDWdtVcFxT23qEPIR862nHH1-bCF2UG73wrGpy3neuLsgmy40XKQxsg3ZMMmoQYptbwk72o9MMaEFGZDXm5CQNcqzYEWBNfiI9L8N3pIffmACQu0mBOF5KmDGVxskFzPJDrvc8t47HjJbo-n6OBIn6BhoT7WmJbiBX2KbU8rHsPg84yetqUink89tVxCmiDldr5HCqXAc31P3gY4Vvzwf16R399ufl3_GO5-fr-9_no3OKl5G-TOKKOZlEIEhRMAczAFpYFLZroXOWojveJi9GrS08jFDkaNggWmgjJOXpFPa-9c8p8z1mYP-VxSP2mFMF3PKMTYU7s15UqutWCwc4knKM-WM7votwe76reLfrvq79iXFcP-wWPEYquL2M35WLoX63N8veAfIwaSFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283285225</pqid></control><display><type>article</type><title>Effects of reactive oxidants generation and capacitance on photoelectrochemical water disinfection with self-doped titanium dioxide nanotube arrays</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cho, Kangwoo ; Lee, Seonggeun ; Kim, Hyeonjeong ; Kim, Hyung-Eun ; Son, Aseom ; Kim, Eun-ju ; Li, Mengkai ; Qiang, Zhimin ; Hong, Seok Won</creator><creatorcontrib>Cho, Kangwoo ; Lee, Seonggeun ; Kim, Hyeonjeong ; Kim, Hyung-Eun ; Son, Aseom ; Kim, Eun-ju ; Li, Mengkai ; Qiang, Zhimin ; Hong, Seok Won</creatorcontrib><description>[Display omitted] •Self-doped anatase (bl-TNT) and amorphous TiO2 nanotube (bk-TNT) were interrogated.•Lower double layer capacitance of bl-TNT led to higher PEC disinfection of E. coli.•PEC bactericidal rates in tap water were similar or greater than in Na2SO4 solution.•Electrostatic interaction between photoanode and bio-solids determined the kinetics.•Commercial applicability for point-of-use disinfection was demonstrated. We herein provide photoelectrochemical (PEC) disinfection activities of anodically prepared TiO2 nanotube (TNT) arrays (diameter ˜ 100 nm, length ˜ 16 μm on average) that were electrochemically self-doped before (bk-TNT) and after (bl-TNT) an atmospheric annealing at 450 °C. The X-ray diffraction indicated predominating anatase TiO2 signal on bl-TNT, while substantial lattice distortion was noticed for bk-TNT. Although the X-ray photoelectron spectra indicated negligible Ti3+ on surface of both TNTs, linear sweep (cyclic) voltammetry and electrochemical impedance spectrometry confirmed the bk-TNT to show greater double layer capacitance and overall photocurrent, coupled with lower charge transfer resistance. Nevertheless, the PEC disinfection of E. coli was significantly invigorated on bl-TNT, while the bactericidal rates in tap water were comparable or even far greater than those in 0.1 M Na2SO4 solutions, depending on [E. coli]0 (105 or 107 CFU/mL). Under a presumed diffusion-controlled kinetic regime in this study, observed effects of capacitance and electrolyte could be interpreted in terms of electrostatic interaction between the electrical double layer of photoanodes and charged bio-solids, such as repulsion by co-ions (SO42−) and adsorption/surface blocking. Analogous PEC experiments on model organic compounds degradation (4-chlorophenol and methylene blue) corroborated a long-term stability of the bl-TNT (up to 30 consecutive cycles) and the role of surface hydroxyl radical as the primary oxidant.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2019.117910</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anatase ; Arrays ; Biodegradation ; Capacitance ; Charge transfer ; Charging ; Chlorophenol ; Disinfection ; Drinking water ; E coli ; Electric double layer ; Electrochemical self-doping ; Electrochemistry ; Electrostatic properties ; Hydroxyl radicals ; Methylene blue ; Nanotubes ; Organic compounds ; Oxidants ; Oxidizing agents ; Photoelectric effect ; Photoelectric emission ; Photoelectrons ; Reactive oxidants ; Sodium sulfate ; Spectrometry ; TiO2 ; Titanium ; Titanium dioxide ; Water treatment ; X-ray diffraction</subject><ispartof>Applied catalysis. B, Environmental, 2019-11, Vol.257, p.117910, Article 117910</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Nov 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-34868703322f6e9aa0ca9f67a130810135783d6125d69795124a57e20f06f68c3</citedby><cites>FETCH-LOGICAL-c371t-34868703322f6e9aa0ca9f67a130810135783d6125d69795124a57e20f06f68c3</cites><orcidid>0000-0003-0961-3842 ; 0000-0002-1819-7687 ; 0000-0002-6555-3381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2019.117910$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Cho, Kangwoo</creatorcontrib><creatorcontrib>Lee, Seonggeun</creatorcontrib><creatorcontrib>Kim, Hyeonjeong</creatorcontrib><creatorcontrib>Kim, Hyung-Eun</creatorcontrib><creatorcontrib>Son, Aseom</creatorcontrib><creatorcontrib>Kim, Eun-ju</creatorcontrib><creatorcontrib>Li, Mengkai</creatorcontrib><creatorcontrib>Qiang, Zhimin</creatorcontrib><creatorcontrib>Hong, Seok Won</creatorcontrib><title>Effects of reactive oxidants generation and capacitance on photoelectrochemical water disinfection with self-doped titanium dioxide nanotube arrays</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Self-doped anatase (bl-TNT) and amorphous TiO2 nanotube (bk-TNT) were interrogated.•Lower double layer capacitance of bl-TNT led to higher PEC disinfection of E. coli.•PEC bactericidal rates in tap water were similar or greater than in Na2SO4 solution.•Electrostatic interaction between photoanode and bio-solids determined the kinetics.•Commercial applicability for point-of-use disinfection was demonstrated. We herein provide photoelectrochemical (PEC) disinfection activities of anodically prepared TiO2 nanotube (TNT) arrays (diameter ˜ 100 nm, length ˜ 16 μm on average) that were electrochemically self-doped before (bk-TNT) and after (bl-TNT) an atmospheric annealing at 450 °C. The X-ray diffraction indicated predominating anatase TiO2 signal on bl-TNT, while substantial lattice distortion was noticed for bk-TNT. Although the X-ray photoelectron spectra indicated negligible Ti3+ on surface of both TNTs, linear sweep (cyclic) voltammetry and electrochemical impedance spectrometry confirmed the bk-TNT to show greater double layer capacitance and overall photocurrent, coupled with lower charge transfer resistance. Nevertheless, the PEC disinfection of E. coli was significantly invigorated on bl-TNT, while the bactericidal rates in tap water were comparable or even far greater than those in 0.1 M Na2SO4 solutions, depending on [E. coli]0 (105 or 107 CFU/mL). Under a presumed diffusion-controlled kinetic regime in this study, observed effects of capacitance and electrolyte could be interpreted in terms of electrostatic interaction between the electrical double layer of photoanodes and charged bio-solids, such as repulsion by co-ions (SO42−) and adsorption/surface blocking. Analogous PEC experiments on model organic compounds degradation (4-chlorophenol and methylene blue) corroborated a long-term stability of the bl-TNT (up to 30 consecutive cycles) and the role of surface hydroxyl radical as the primary oxidant.</description><subject>Anatase</subject><subject>Arrays</subject><subject>Biodegradation</subject><subject>Capacitance</subject><subject>Charge transfer</subject><subject>Charging</subject><subject>Chlorophenol</subject><subject>Disinfection</subject><subject>Drinking water</subject><subject>E coli</subject><subject>Electric double layer</subject><subject>Electrochemical self-doping</subject><subject>Electrochemistry</subject><subject>Electrostatic properties</subject><subject>Hydroxyl radicals</subject><subject>Methylene blue</subject><subject>Nanotubes</subject><subject>Organic compounds</subject><subject>Oxidants</subject><subject>Oxidizing agents</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectrons</subject><subject>Reactive oxidants</subject><subject>Sodium sulfate</subject><subject>Spectrometry</subject><subject>TiO2</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Water treatment</subject><subject>X-ray diffraction</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqHDEQRYVJwBMnf5CFIOue6DEtqTeBYJzEYMgmWYuyVPJomJE6ksaOv8M_HDWdtVcFxT23qEPIR862nHH1-bCF2UG73wrGpy3neuLsgmy40XKQxsg3ZMMmoQYptbwk72o9MMaEFGZDXm5CQNcqzYEWBNfiI9L8N3pIffmACQu0mBOF5KmDGVxskFzPJDrvc8t47HjJbo-n6OBIn6BhoT7WmJbiBX2KbU8rHsPg84yetqUink89tVxCmiDldr5HCqXAc31P3gY4Vvzwf16R399ufl3_GO5-fr-9_no3OKl5G-TOKKOZlEIEhRMAczAFpYFLZroXOWojveJi9GrS08jFDkaNggWmgjJOXpFPa-9c8p8z1mYP-VxSP2mFMF3PKMTYU7s15UqutWCwc4knKM-WM7votwe76reLfrvq79iXFcP-wWPEYquL2M35WLoX63N8veAfIwaSFw</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Cho, Kangwoo</creator><creator>Lee, Seonggeun</creator><creator>Kim, Hyeonjeong</creator><creator>Kim, Hyung-Eun</creator><creator>Son, Aseom</creator><creator>Kim, Eun-ju</creator><creator>Li, Mengkai</creator><creator>Qiang, Zhimin</creator><creator>Hong, Seok Won</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0961-3842</orcidid><orcidid>https://orcid.org/0000-0002-1819-7687</orcidid><orcidid>https://orcid.org/0000-0002-6555-3381</orcidid></search><sort><creationdate>20191115</creationdate><title>Effects of reactive oxidants generation and capacitance on photoelectrochemical water disinfection with self-doped titanium dioxide nanotube arrays</title><author>Cho, Kangwoo ; Lee, Seonggeun ; Kim, Hyeonjeong ; Kim, Hyung-Eun ; Son, Aseom ; Kim, Eun-ju ; Li, Mengkai ; Qiang, Zhimin ; Hong, Seok Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-34868703322f6e9aa0ca9f67a130810135783d6125d69795124a57e20f06f68c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anatase</topic><topic>Arrays</topic><topic>Biodegradation</topic><topic>Capacitance</topic><topic>Charge transfer</topic><topic>Charging</topic><topic>Chlorophenol</topic><topic>Disinfection</topic><topic>Drinking water</topic><topic>E coli</topic><topic>Electric double layer</topic><topic>Electrochemical self-doping</topic><topic>Electrochemistry</topic><topic>Electrostatic properties</topic><topic>Hydroxyl radicals</topic><topic>Methylene blue</topic><topic>Nanotubes</topic><topic>Organic compounds</topic><topic>Oxidants</topic><topic>Oxidizing agents</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectrons</topic><topic>Reactive oxidants</topic><topic>Sodium sulfate</topic><topic>Spectrometry</topic><topic>TiO2</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Water treatment</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Kangwoo</creatorcontrib><creatorcontrib>Lee, Seonggeun</creatorcontrib><creatorcontrib>Kim, Hyeonjeong</creatorcontrib><creatorcontrib>Kim, Hyung-Eun</creatorcontrib><creatorcontrib>Son, Aseom</creatorcontrib><creatorcontrib>Kim, Eun-ju</creatorcontrib><creatorcontrib>Li, Mengkai</creatorcontrib><creatorcontrib>Qiang, Zhimin</creatorcontrib><creatorcontrib>Hong, Seok Won</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Kangwoo</au><au>Lee, Seonggeun</au><au>Kim, Hyeonjeong</au><au>Kim, Hyung-Eun</au><au>Son, Aseom</au><au>Kim, Eun-ju</au><au>Li, Mengkai</au><au>Qiang, Zhimin</au><au>Hong, Seok Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of reactive oxidants generation and capacitance on photoelectrochemical water disinfection with self-doped titanium dioxide nanotube arrays</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2019-11-15</date><risdate>2019</risdate><volume>257</volume><spage>117910</spage><pages>117910-</pages><artnum>117910</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Self-doped anatase (bl-TNT) and amorphous TiO2 nanotube (bk-TNT) were interrogated.•Lower double layer capacitance of bl-TNT led to higher PEC disinfection of E. coli.•PEC bactericidal rates in tap water were similar or greater than in Na2SO4 solution.•Electrostatic interaction between photoanode and bio-solids determined the kinetics.•Commercial applicability for point-of-use disinfection was demonstrated. We herein provide photoelectrochemical (PEC) disinfection activities of anodically prepared TiO2 nanotube (TNT) arrays (diameter ˜ 100 nm, length ˜ 16 μm on average) that were electrochemically self-doped before (bk-TNT) and after (bl-TNT) an atmospheric annealing at 450 °C. The X-ray diffraction indicated predominating anatase TiO2 signal on bl-TNT, while substantial lattice distortion was noticed for bk-TNT. Although the X-ray photoelectron spectra indicated negligible Ti3+ on surface of both TNTs, linear sweep (cyclic) voltammetry and electrochemical impedance spectrometry confirmed the bk-TNT to show greater double layer capacitance and overall photocurrent, coupled with lower charge transfer resistance. Nevertheless, the PEC disinfection of E. coli was significantly invigorated on bl-TNT, while the bactericidal rates in tap water were comparable or even far greater than those in 0.1 M Na2SO4 solutions, depending on [E. coli]0 (105 or 107 CFU/mL). Under a presumed diffusion-controlled kinetic regime in this study, observed effects of capacitance and electrolyte could be interpreted in terms of electrostatic interaction between the electrical double layer of photoanodes and charged bio-solids, such as repulsion by co-ions (SO42−) and adsorption/surface blocking. Analogous PEC experiments on model organic compounds degradation (4-chlorophenol and methylene blue) corroborated a long-term stability of the bl-TNT (up to 30 consecutive cycles) and the role of surface hydroxyl radical as the primary oxidant.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2019.117910</doi><orcidid>https://orcid.org/0000-0003-0961-3842</orcidid><orcidid>https://orcid.org/0000-0002-1819-7687</orcidid><orcidid>https://orcid.org/0000-0002-6555-3381</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2019-11, Vol.257, p.117910, Article 117910
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2283285225
source Access via ScienceDirect (Elsevier)
subjects Anatase
Arrays
Biodegradation
Capacitance
Charge transfer
Charging
Chlorophenol
Disinfection
Drinking water
E coli
Electric double layer
Electrochemical self-doping
Electrochemistry
Electrostatic properties
Hydroxyl radicals
Methylene blue
Nanotubes
Organic compounds
Oxidants
Oxidizing agents
Photoelectric effect
Photoelectric emission
Photoelectrons
Reactive oxidants
Sodium sulfate
Spectrometry
TiO2
Titanium
Titanium dioxide
Water treatment
X-ray diffraction
title Effects of reactive oxidants generation and capacitance on photoelectrochemical water disinfection with self-doped titanium dioxide nanotube arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T03%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20reactive%20oxidants%20generation%20and%20capacitance%20on%20photoelectrochemical%20water%20disinfection%20with%20self-doped%20titanium%20dioxide%20nanotube%20arrays&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Cho,%20Kangwoo&rft.date=2019-11-15&rft.volume=257&rft.spage=117910&rft.pages=117910-&rft.artnum=117910&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2019.117910&rft_dat=%3Cproquest_cross%3E2283285225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283285225&rft_id=info:pmid/&rft_els_id=S0926337319306563&rfr_iscdi=true