Initial-boundary value problems for a time-fractional differential equation with involution perturbation
Direct and inverse initial-boundary value problems of a time-fractional heat equation with involution perturbation are considered using both local and nonlocal boundary conditions. Results on existence of formal solutions to these problems are presented. Solutions are expressed in a form of series e...
Gespeichert in:
Veröffentlicht in: | Mathematical modelling of natural phenomena 2019-01, Vol.14 (3), p.312 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 312 |
container_title | Mathematical modelling of natural phenomena |
container_volume | 14 |
creator | Al-Salti, Nasser Kerbal, Sebti Kirane, Mokhtar |
description | Direct and inverse initial-boundary value problems of a time-fractional heat equation with involution perturbation are considered using both local and nonlocal boundary conditions. Results on existence of formal solutions to these problems are presented. Solutions are expressed in a form of series expansions using appropriate orthogonal basis obtained by separation of variables. Convergence of series solutions are obtained by imposing certain conditions on the given data. Uniqueness of the obtained solutions are also discussed. The obtained general solutions are illustrated by an example using an appropriate choice of the given data. |
doi_str_mv | 10.1051/mmnp/2019014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2283282104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267402770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-e451cb01527bbf4aefab5095e79141c5fce0a3a92c03fb713bbb424d5c81f70c3</originalsourceid><addsrcrecordid>eNp9kMlKBDEQQIMoOKg3PyDg1daqLJ3uo4obCO54DEkmwWgvY9Lt8vf2OOLRXIpUvSqqHiG7CAcIEg_btlscMsAaUKyRGaoSihIB18kMasULyUW1SXZyfoHpcRQcYEaeL7s4RNMUth-7uUlf9N00o6eL1NvGt5mGPlFDh9j6IiTjhth3pqHzGIJPvlu2Uv82mmWefsThmcbuvW_Gn__Cp2FM9qe4TTaCabLf-Y1b5PHs9OHkori6Pr88OboqHGf1UHgh0VlAyZS1QRgfjJVQS69qFOhkcB4MNzVzwINVyK21gom5dBUGBY5vkb3V3OmCt9HnQb_0Y5p2zpqxirOKIYj_qVIJYErBRO2vKJf6nJMPepFiO0nSCHopXS-l61_pE16s8JgH__nHmvSqS8WV1BU8aX5_q27uoNTH_BuTiIWS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267402770</pqid></control><display><type>article</type><title>Initial-boundary value problems for a time-fractional differential equation with involution perturbation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Al-Salti, Nasser ; Kerbal, Sebti ; Kirane, Mokhtar</creator><contributor>Kumar, D. ; Baleanu, D. ; Nieto, J.J. ; Hristov, J. ; Ozdemir, N.</contributor><creatorcontrib>Al-Salti, Nasser ; Kerbal, Sebti ; Kirane, Mokhtar ; Kumar, D. ; Baleanu, D. ; Nieto, J.J. ; Hristov, J. ; Ozdemir, N.</creatorcontrib><description>Direct and inverse initial-boundary value problems of a time-fractional heat equation with involution perturbation are considered using both local and nonlocal boundary conditions. Results on existence of formal solutions to these problems are presented. Solutions are expressed in a form of series expansions using appropriate orthogonal basis obtained by separation of variables. Convergence of series solutions are obtained by imposing certain conditions on the given data. Uniqueness of the obtained solutions are also discussed. The obtained general solutions are illustrated by an example using an appropriate choice of the given data.</description><identifier>ISSN: 0973-5348</identifier><identifier>EISSN: 1760-6101</identifier><identifier>DOI: 10.1051/mmnp/2019014</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>34A08 ; 35R30 ; 39B52 ; Boundary conditions ; Boundary value problems ; Differential equations ; Initial-boundary value problems ; involution perturbation ; Perturbation ; Thermodynamics ; time-fractional differential equation</subject><ispartof>Mathematical modelling of natural phenomena, 2019-01, Vol.14 (3), p.312</ispartof><rights>2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.mmnp-journal.org/articles/mmnp/abs/2019/03/mmnp180153/mmnp180153.html .</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-e451cb01527bbf4aefab5095e79141c5fce0a3a92c03fb713bbb424d5c81f70c3</citedby><cites>FETCH-LOGICAL-c329t-e451cb01527bbf4aefab5095e79141c5fce0a3a92c03fb713bbb424d5c81f70c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Kumar, D.</contributor><contributor>Baleanu, D.</contributor><contributor>Nieto, J.J.</contributor><contributor>Hristov, J.</contributor><contributor>Ozdemir, N.</contributor><creatorcontrib>Al-Salti, Nasser</creatorcontrib><creatorcontrib>Kerbal, Sebti</creatorcontrib><creatorcontrib>Kirane, Mokhtar</creatorcontrib><title>Initial-boundary value problems for a time-fractional differential equation with involution perturbation</title><title>Mathematical modelling of natural phenomena</title><description>Direct and inverse initial-boundary value problems of a time-fractional heat equation with involution perturbation are considered using both local and nonlocal boundary conditions. Results on existence of formal solutions to these problems are presented. Solutions are expressed in a form of series expansions using appropriate orthogonal basis obtained by separation of variables. Convergence of series solutions are obtained by imposing certain conditions on the given data. Uniqueness of the obtained solutions are also discussed. The obtained general solutions are illustrated by an example using an appropriate choice of the given data.</description><subject>34A08</subject><subject>35R30</subject><subject>39B52</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Initial-boundary value problems</subject><subject>involution perturbation</subject><subject>Perturbation</subject><subject>Thermodynamics</subject><subject>time-fractional differential equation</subject><issn>0973-5348</issn><issn>1760-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMlKBDEQQIMoOKg3PyDg1daqLJ3uo4obCO54DEkmwWgvY9Lt8vf2OOLRXIpUvSqqHiG7CAcIEg_btlscMsAaUKyRGaoSihIB18kMasULyUW1SXZyfoHpcRQcYEaeL7s4RNMUth-7uUlf9N00o6eL1NvGt5mGPlFDh9j6IiTjhth3pqHzGIJPvlu2Uv82mmWefsThmcbuvW_Gn__Cp2FM9qe4TTaCabLf-Y1b5PHs9OHkori6Pr88OboqHGf1UHgh0VlAyZS1QRgfjJVQS69qFOhkcB4MNzVzwINVyK21gom5dBUGBY5vkb3V3OmCt9HnQb_0Y5p2zpqxirOKIYj_qVIJYErBRO2vKJf6nJMPepFiO0nSCHopXS-l61_pE16s8JgH__nHmvSqS8WV1BU8aX5_q27uoNTH_BuTiIWS</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Al-Salti, Nasser</creator><creator>Kerbal, Sebti</creator><creator>Kirane, Mokhtar</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190101</creationdate><title>Initial-boundary value problems for a time-fractional differential equation with involution perturbation</title><author>Al-Salti, Nasser ; Kerbal, Sebti ; Kirane, Mokhtar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-e451cb01527bbf4aefab5095e79141c5fce0a3a92c03fb713bbb424d5c81f70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>34A08</topic><topic>35R30</topic><topic>39B52</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Initial-boundary value problems</topic><topic>involution perturbation</topic><topic>Perturbation</topic><topic>Thermodynamics</topic><topic>time-fractional differential equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Salti, Nasser</creatorcontrib><creatorcontrib>Kerbal, Sebti</creatorcontrib><creatorcontrib>Kirane, Mokhtar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical modelling of natural phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Salti, Nasser</au><au>Kerbal, Sebti</au><au>Kirane, Mokhtar</au><au>Kumar, D.</au><au>Baleanu, D.</au><au>Nieto, J.J.</au><au>Hristov, J.</au><au>Ozdemir, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial-boundary value problems for a time-fractional differential equation with involution perturbation</atitle><jtitle>Mathematical modelling of natural phenomena</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>14</volume><issue>3</issue><spage>312</spage><pages>312-</pages><issn>0973-5348</issn><eissn>1760-6101</eissn><abstract>Direct and inverse initial-boundary value problems of a time-fractional heat equation with involution perturbation are considered using both local and nonlocal boundary conditions. Results on existence of formal solutions to these problems are presented. Solutions are expressed in a form of series expansions using appropriate orthogonal basis obtained by separation of variables. Convergence of series solutions are obtained by imposing certain conditions on the given data. Uniqueness of the obtained solutions are also discussed. The obtained general solutions are illustrated by an example using an appropriate choice of the given data.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/mmnp/2019014</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-5348 |
ispartof | Mathematical modelling of natural phenomena, 2019-01, Vol.14 (3), p.312 |
issn | 0973-5348 1760-6101 |
language | eng |
recordid | cdi_proquest_journals_2283282104 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 34A08 35R30 39B52 Boundary conditions Boundary value problems Differential equations Initial-boundary value problems involution perturbation Perturbation Thermodynamics time-fractional differential equation |
title | Initial-boundary value problems for a time-fractional differential equation with involution perturbation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial-boundary%20value%20problems%20for%20a%20time-fractional%20differential%20equation%20with%20involution%20perturbation&rft.jtitle=Mathematical%20modelling%20of%20natural%20phenomena&rft.au=Al-Salti,%20Nasser&rft.date=2019-01-01&rft.volume=14&rft.issue=3&rft.spage=312&rft.pages=312-&rft.issn=0973-5348&rft.eissn=1760-6101&rft_id=info:doi/10.1051/mmnp/2019014&rft_dat=%3Cproquest_cross%3E2267402770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267402770&rft_id=info:pmid/&rfr_iscdi=true |