Initial-boundary value problems for a time-fractional differential equation with involution perturbation

Direct and inverse initial-boundary value problems of a time-fractional heat equation with involution perturbation are considered using both local and nonlocal boundary conditions. Results on existence of formal solutions to these problems are presented. Solutions are expressed in a form of series e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical modelling of natural phenomena 2019-01, Vol.14 (3), p.312
Hauptverfasser: Al-Salti, Nasser, Kerbal, Sebti, Kirane, Mokhtar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 312
container_title Mathematical modelling of natural phenomena
container_volume 14
creator Al-Salti, Nasser
Kerbal, Sebti
Kirane, Mokhtar
description Direct and inverse initial-boundary value problems of a time-fractional heat equation with involution perturbation are considered using both local and nonlocal boundary conditions. Results on existence of formal solutions to these problems are presented. Solutions are expressed in a form of series expansions using appropriate orthogonal basis obtained by separation of variables. Convergence of series solutions are obtained by imposing certain conditions on the given data. Uniqueness of the obtained solutions are also discussed. The obtained general solutions are illustrated by an example using an appropriate choice of the given data.
doi_str_mv 10.1051/mmnp/2019014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2283282104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267402770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-e451cb01527bbf4aefab5095e79141c5fce0a3a92c03fb713bbb424d5c81f70c3</originalsourceid><addsrcrecordid>eNp9kMlKBDEQQIMoOKg3PyDg1daqLJ3uo4obCO54DEkmwWgvY9Lt8vf2OOLRXIpUvSqqHiG7CAcIEg_btlscMsAaUKyRGaoSihIB18kMasULyUW1SXZyfoHpcRQcYEaeL7s4RNMUth-7uUlf9N00o6eL1NvGt5mGPlFDh9j6IiTjhth3pqHzGIJPvlu2Uv82mmWefsThmcbuvW_Gn__Cp2FM9qe4TTaCabLf-Y1b5PHs9OHkori6Pr88OboqHGf1UHgh0VlAyZS1QRgfjJVQS69qFOhkcB4MNzVzwINVyK21gom5dBUGBY5vkb3V3OmCt9HnQb_0Y5p2zpqxirOKIYj_qVIJYErBRO2vKJf6nJMPepFiO0nSCHopXS-l61_pE16s8JgH__nHmvSqS8WV1BU8aX5_q27uoNTH_BuTiIWS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267402770</pqid></control><display><type>article</type><title>Initial-boundary value problems for a time-fractional differential equation with involution perturbation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Al-Salti, Nasser ; Kerbal, Sebti ; Kirane, Mokhtar</creator><contributor>Kumar, D. ; Baleanu, D. ; Nieto, J.J. ; Hristov, J. ; Ozdemir, N.</contributor><creatorcontrib>Al-Salti, Nasser ; Kerbal, Sebti ; Kirane, Mokhtar ; Kumar, D. ; Baleanu, D. ; Nieto, J.J. ; Hristov, J. ; Ozdemir, N.</creatorcontrib><description>Direct and inverse initial-boundary value problems of a time-fractional heat equation with involution perturbation are considered using both local and nonlocal boundary conditions. Results on existence of formal solutions to these problems are presented. Solutions are expressed in a form of series expansions using appropriate orthogonal basis obtained by separation of variables. Convergence of series solutions are obtained by imposing certain conditions on the given data. Uniqueness of the obtained solutions are also discussed. The obtained general solutions are illustrated by an example using an appropriate choice of the given data.</description><identifier>ISSN: 0973-5348</identifier><identifier>EISSN: 1760-6101</identifier><identifier>DOI: 10.1051/mmnp/2019014</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>34A08 ; 35R30 ; 39B52 ; Boundary conditions ; Boundary value problems ; Differential equations ; Initial-boundary value problems ; involution perturbation ; Perturbation ; Thermodynamics ; time-fractional differential equation</subject><ispartof>Mathematical modelling of natural phenomena, 2019-01, Vol.14 (3), p.312</ispartof><rights>2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.mmnp-journal.org/articles/mmnp/abs/2019/03/mmnp180153/mmnp180153.html .</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-e451cb01527bbf4aefab5095e79141c5fce0a3a92c03fb713bbb424d5c81f70c3</citedby><cites>FETCH-LOGICAL-c329t-e451cb01527bbf4aefab5095e79141c5fce0a3a92c03fb713bbb424d5c81f70c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Kumar, D.</contributor><contributor>Baleanu, D.</contributor><contributor>Nieto, J.J.</contributor><contributor>Hristov, J.</contributor><contributor>Ozdemir, N.</contributor><creatorcontrib>Al-Salti, Nasser</creatorcontrib><creatorcontrib>Kerbal, Sebti</creatorcontrib><creatorcontrib>Kirane, Mokhtar</creatorcontrib><title>Initial-boundary value problems for a time-fractional differential equation with involution perturbation</title><title>Mathematical modelling of natural phenomena</title><description>Direct and inverse initial-boundary value problems of a time-fractional heat equation with involution perturbation are considered using both local and nonlocal boundary conditions. Results on existence of formal solutions to these problems are presented. Solutions are expressed in a form of series expansions using appropriate orthogonal basis obtained by separation of variables. Convergence of series solutions are obtained by imposing certain conditions on the given data. Uniqueness of the obtained solutions are also discussed. The obtained general solutions are illustrated by an example using an appropriate choice of the given data.</description><subject>34A08</subject><subject>35R30</subject><subject>39B52</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Initial-boundary value problems</subject><subject>involution perturbation</subject><subject>Perturbation</subject><subject>Thermodynamics</subject><subject>time-fractional differential equation</subject><issn>0973-5348</issn><issn>1760-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMlKBDEQQIMoOKg3PyDg1daqLJ3uo4obCO54DEkmwWgvY9Lt8vf2OOLRXIpUvSqqHiG7CAcIEg_btlscMsAaUKyRGaoSihIB18kMasULyUW1SXZyfoHpcRQcYEaeL7s4RNMUth-7uUlf9N00o6eL1NvGt5mGPlFDh9j6IiTjhth3pqHzGIJPvlu2Uv82mmWefsThmcbuvW_Gn__Cp2FM9qe4TTaCabLf-Y1b5PHs9OHkori6Pr88OboqHGf1UHgh0VlAyZS1QRgfjJVQS69qFOhkcB4MNzVzwINVyK21gom5dBUGBY5vkb3V3OmCt9HnQb_0Y5p2zpqxirOKIYj_qVIJYErBRO2vKJf6nJMPepFiO0nSCHopXS-l61_pE16s8JgH__nHmvSqS8WV1BU8aX5_q27uoNTH_BuTiIWS</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Al-Salti, Nasser</creator><creator>Kerbal, Sebti</creator><creator>Kirane, Mokhtar</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190101</creationdate><title>Initial-boundary value problems for a time-fractional differential equation with involution perturbation</title><author>Al-Salti, Nasser ; Kerbal, Sebti ; Kirane, Mokhtar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-e451cb01527bbf4aefab5095e79141c5fce0a3a92c03fb713bbb424d5c81f70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>34A08</topic><topic>35R30</topic><topic>39B52</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Initial-boundary value problems</topic><topic>involution perturbation</topic><topic>Perturbation</topic><topic>Thermodynamics</topic><topic>time-fractional differential equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Salti, Nasser</creatorcontrib><creatorcontrib>Kerbal, Sebti</creatorcontrib><creatorcontrib>Kirane, Mokhtar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical modelling of natural phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Salti, Nasser</au><au>Kerbal, Sebti</au><au>Kirane, Mokhtar</au><au>Kumar, D.</au><au>Baleanu, D.</au><au>Nieto, J.J.</au><au>Hristov, J.</au><au>Ozdemir, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial-boundary value problems for a time-fractional differential equation with involution perturbation</atitle><jtitle>Mathematical modelling of natural phenomena</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>14</volume><issue>3</issue><spage>312</spage><pages>312-</pages><issn>0973-5348</issn><eissn>1760-6101</eissn><abstract>Direct and inverse initial-boundary value problems of a time-fractional heat equation with involution perturbation are considered using both local and nonlocal boundary conditions. Results on existence of formal solutions to these problems are presented. Solutions are expressed in a form of series expansions using appropriate orthogonal basis obtained by separation of variables. Convergence of series solutions are obtained by imposing certain conditions on the given data. Uniqueness of the obtained solutions are also discussed. The obtained general solutions are illustrated by an example using an appropriate choice of the given data.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/mmnp/2019014</doi></addata></record>
fulltext fulltext
identifier ISSN: 0973-5348
ispartof Mathematical modelling of natural phenomena, 2019-01, Vol.14 (3), p.312
issn 0973-5348
1760-6101
language eng
recordid cdi_proquest_journals_2283282104
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 34A08
35R30
39B52
Boundary conditions
Boundary value problems
Differential equations
Initial-boundary value problems
involution perturbation
Perturbation
Thermodynamics
time-fractional differential equation
title Initial-boundary value problems for a time-fractional differential equation with involution perturbation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial-boundary%20value%20problems%20for%20a%20time-fractional%20differential%20equation%20with%20involution%20perturbation&rft.jtitle=Mathematical%20modelling%20of%20natural%20phenomena&rft.au=Al-Salti,%20Nasser&rft.date=2019-01-01&rft.volume=14&rft.issue=3&rft.spage=312&rft.pages=312-&rft.issn=0973-5348&rft.eissn=1760-6101&rft_id=info:doi/10.1051/mmnp/2019014&rft_dat=%3Cproquest_cross%3E2267402770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267402770&rft_id=info:pmid/&rfr_iscdi=true