MANNGA: A Robust Method for Gap Filling Meteorological Data
Abstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the s...
Gespeichert in:
Veröffentlicht in: | Revista Brasileira de Meteorologia 2019-06, Vol.34 (2), p.315-323 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng ; por |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 323 |
---|---|
container_issue | 2 |
container_start_page | 315 |
container_title | Revista Brasileira de Meteorologia |
container_volume | 34 |
creator | Ventura, Thiago Meirelles Martins, Claudia Aparecida Figueiredo, Josiel Maimone de Oliveira, Allan Gonçalves de Montanher, Johnata Rodrigo Pinheiro |
description | Abstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language.
Resumo Este trabalho apresenta o método Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), desenvolvido para preencher falhas em dados meteorológicos. A ideia principal é preencher as falhas baseando-se nos valores de outras variáveis meteorológicas medidas no mesmo momento, uma vez que as variáveis meteorológicas possuem forte relação entre si. Testes foram executados para mostrar a performance do Mannga comparado com outros dois métodos comumente utilizados na área. Os resultados alcançados atingiram uma boa precisão, principalmente relacionado ao desafio de preencher valores em dados que ocorrem em sequência. As principais vantagens do Mannga são a sua flexibilidade em manipular diferentes tipos de dados meteorológicos, a habilidade de selecionar as melhores variáveis para auxiliar no preenchimento das falhas e a capacidade de lidar com falhas sequenciais. Além disso, o método está disponível publicamente na linguagem de programação Java. |
doi_str_mv | 10.1590/0102-77863340035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2283261365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4108e5b531144cf194865d0e8fc40f71</doaj_id><sourcerecordid>2283261365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3335-7c49375092fd47eb60f2b9608227b827a6251eaff6b45ee232f4e73c44439ba33</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3jwueVyeZfK2elmproa0geg7ZbFK3rE3Nbg_-e1srxdPAOy_PDA8h1xRuqSjgDiiwXCktETkAihMyoIVmOUdBT8nguD4nF123ApBApRiQh3m5WEzK-6zMXmO17fps7vuPWGchpmxiN9m4adtmvdzHPqbYxmXjbJs92t5ekrNg285f_c0heR8_vY2e89nLZDoqZ7lDRJErxwtUAgoWaq58JSGwqpCgGVOVZspKJqi3IciKC-8ZssC9Qsc5x6KyiEMyPXDraFdmk5pPm75NtI35DWJaGpv6xrXecArai0ogpZy7QAuupajB6-A4BEV3rJsDa5Pi19Z3vVnFbVrv3jeMaWSSohS7FhxaLsWuSz4cr1Iwe91m79P8040_wR5tLg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283261365</pqid></control><display><type>article</type><title>MANNGA: A Robust Method for Gap Filling Meteorological Data</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ventura, Thiago Meirelles ; Martins, Claudia Aparecida ; Figueiredo, Josiel Maimone de ; Oliveira, Allan Gonçalves de ; Montanher, Johnata Rodrigo Pinheiro</creator><creatorcontrib>Ventura, Thiago Meirelles ; Martins, Claudia Aparecida ; Figueiredo, Josiel Maimone de ; Oliveira, Allan Gonçalves de ; Montanher, Johnata Rodrigo Pinheiro</creatorcontrib><description>Abstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language.
Resumo Este trabalho apresenta o método Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), desenvolvido para preencher falhas em dados meteorológicos. A ideia principal é preencher as falhas baseando-se nos valores de outras variáveis meteorológicas medidas no mesmo momento, uma vez que as variáveis meteorológicas possuem forte relação entre si. Testes foram executados para mostrar a performance do Mannga comparado com outros dois métodos comumente utilizados na área. Os resultados alcançados atingiram uma boa precisão, principalmente relacionado ao desafio de preencher valores em dados que ocorrem em sequência. As principais vantagens do Mannga são a sua flexibilidade em manipular diferentes tipos de dados meteorológicos, a habilidade de selecionar as melhores variáveis para auxiliar no preenchimento das falhas e a capacidade de lidar com falhas sequenciais. Além disso, o método está disponível publicamente na linguagem de programação Java.</description><identifier>ISSN: 0102-7786</identifier><identifier>ISSN: 1982-4351</identifier><identifier>EISSN: 1982-4351</identifier><identifier>DOI: 10.1590/0102-77863340035</identifier><language>eng ; por</language><publisher>Rio de Janeiro: Sociedade Brasileira de Meteorologia</publisher><subject>Algorithms ; algoritmos genéticos ; Artificial neural networks ; dados multivariados ; Failures ; Genetic algorithms ; Handling ; Java ; Lidar ; Meteorological data ; Missing data ; Neural networks ; redes neurais artificiais ; software livre</subject><ispartof>Revista Brasileira de Meteorologia, 2019-06, Vol.34 (2), p.315-323</ispartof><rights>Copyright Sociedade Brasileira de Meteorologia Apr-Jun 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3335-7c49375092fd47eb60f2b9608227b827a6251eaff6b45ee232f4e73c44439ba33</citedby><cites>FETCH-LOGICAL-c3335-7c49375092fd47eb60f2b9608227b827a6251eaff6b45ee232f4e73c44439ba33</cites><orcidid>0000-0002-3758-5466 ; 0000-0001-7861-8896 ; 0000-0002-6352-9548 ; 0000-0003-4827-1048 ; 0000-0001-8569-7684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Ventura, Thiago Meirelles</creatorcontrib><creatorcontrib>Martins, Claudia Aparecida</creatorcontrib><creatorcontrib>Figueiredo, Josiel Maimone de</creatorcontrib><creatorcontrib>Oliveira, Allan Gonçalves de</creatorcontrib><creatorcontrib>Montanher, Johnata Rodrigo Pinheiro</creatorcontrib><title>MANNGA: A Robust Method for Gap Filling Meteorological Data</title><title>Revista Brasileira de Meteorologia</title><description>Abstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language.
Resumo Este trabalho apresenta o método Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), desenvolvido para preencher falhas em dados meteorológicos. A ideia principal é preencher as falhas baseando-se nos valores de outras variáveis meteorológicas medidas no mesmo momento, uma vez que as variáveis meteorológicas possuem forte relação entre si. Testes foram executados para mostrar a performance do Mannga comparado com outros dois métodos comumente utilizados na área. Os resultados alcançados atingiram uma boa precisão, principalmente relacionado ao desafio de preencher valores em dados que ocorrem em sequência. As principais vantagens do Mannga são a sua flexibilidade em manipular diferentes tipos de dados meteorológicos, a habilidade de selecionar as melhores variáveis para auxiliar no preenchimento das falhas e a capacidade de lidar com falhas sequenciais. Além disso, o método está disponível publicamente na linguagem de programação Java.</description><subject>Algorithms</subject><subject>algoritmos genéticos</subject><subject>Artificial neural networks</subject><subject>dados multivariados</subject><subject>Failures</subject><subject>Genetic algorithms</subject><subject>Handling</subject><subject>Java</subject><subject>Lidar</subject><subject>Meteorological data</subject><subject>Missing data</subject><subject>Neural networks</subject><subject>redes neurais artificiais</subject><subject>software livre</subject><issn>0102-7786</issn><issn>1982-4351</issn><issn>1982-4351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3jwueVyeZfK2elmproa0geg7ZbFK3rE3Nbg_-e1srxdPAOy_PDA8h1xRuqSjgDiiwXCktETkAihMyoIVmOUdBT8nguD4nF123ApBApRiQh3m5WEzK-6zMXmO17fps7vuPWGchpmxiN9m4adtmvdzHPqbYxmXjbJs92t5ekrNg285f_c0heR8_vY2e89nLZDoqZ7lDRJErxwtUAgoWaq58JSGwqpCgGVOVZspKJqi3IciKC-8ZssC9Qsc5x6KyiEMyPXDraFdmk5pPm75NtI35DWJaGpv6xrXecArai0ogpZy7QAuupajB6-A4BEV3rJsDa5Pi19Z3vVnFbVrv3jeMaWSSohS7FhxaLsWuSz4cr1Iwe91m79P8040_wR5tLg</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ventura, Thiago Meirelles</creator><creator>Martins, Claudia Aparecida</creator><creator>Figueiredo, Josiel Maimone de</creator><creator>Oliveira, Allan Gonçalves de</creator><creator>Montanher, Johnata Rodrigo Pinheiro</creator><general>Sociedade Brasileira de Meteorologia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3758-5466</orcidid><orcidid>https://orcid.org/0000-0001-7861-8896</orcidid><orcidid>https://orcid.org/0000-0002-6352-9548</orcidid><orcidid>https://orcid.org/0000-0003-4827-1048</orcidid><orcidid>https://orcid.org/0000-0001-8569-7684</orcidid></search><sort><creationdate>20190601</creationdate><title>MANNGA: A Robust Method for Gap Filling Meteorological Data</title><author>Ventura, Thiago Meirelles ; Martins, Claudia Aparecida ; Figueiredo, Josiel Maimone de ; Oliveira, Allan Gonçalves de ; Montanher, Johnata Rodrigo Pinheiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3335-7c49375092fd47eb60f2b9608227b827a6251eaff6b45ee232f4e73c44439ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>algoritmos genéticos</topic><topic>Artificial neural networks</topic><topic>dados multivariados</topic><topic>Failures</topic><topic>Genetic algorithms</topic><topic>Handling</topic><topic>Java</topic><topic>Lidar</topic><topic>Meteorological data</topic><topic>Missing data</topic><topic>Neural networks</topic><topic>redes neurais artificiais</topic><topic>software livre</topic><toplevel>online_resources</toplevel><creatorcontrib>Ventura, Thiago Meirelles</creatorcontrib><creatorcontrib>Martins, Claudia Aparecida</creatorcontrib><creatorcontrib>Figueiredo, Josiel Maimone de</creatorcontrib><creatorcontrib>Oliveira, Allan Gonçalves de</creatorcontrib><creatorcontrib>Montanher, Johnata Rodrigo Pinheiro</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Revista Brasileira de Meteorologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ventura, Thiago Meirelles</au><au>Martins, Claudia Aparecida</au><au>Figueiredo, Josiel Maimone de</au><au>Oliveira, Allan Gonçalves de</au><au>Montanher, Johnata Rodrigo Pinheiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MANNGA: A Robust Method for Gap Filling Meteorological Data</atitle><jtitle>Revista Brasileira de Meteorologia</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>34</volume><issue>2</issue><spage>315</spage><epage>323</epage><pages>315-323</pages><issn>0102-7786</issn><issn>1982-4351</issn><eissn>1982-4351</eissn><abstract>Abstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language.
Resumo Este trabalho apresenta o método Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), desenvolvido para preencher falhas em dados meteorológicos. A ideia principal é preencher as falhas baseando-se nos valores de outras variáveis meteorológicas medidas no mesmo momento, uma vez que as variáveis meteorológicas possuem forte relação entre si. Testes foram executados para mostrar a performance do Mannga comparado com outros dois métodos comumente utilizados na área. Os resultados alcançados atingiram uma boa precisão, principalmente relacionado ao desafio de preencher valores em dados que ocorrem em sequência. As principais vantagens do Mannga são a sua flexibilidade em manipular diferentes tipos de dados meteorológicos, a habilidade de selecionar as melhores variáveis para auxiliar no preenchimento das falhas e a capacidade de lidar com falhas sequenciais. Além disso, o método está disponível publicamente na linguagem de programação Java.</abstract><cop>Rio de Janeiro</cop><pub>Sociedade Brasileira de Meteorologia</pub><doi>10.1590/0102-77863340035</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3758-5466</orcidid><orcidid>https://orcid.org/0000-0001-7861-8896</orcidid><orcidid>https://orcid.org/0000-0002-6352-9548</orcidid><orcidid>https://orcid.org/0000-0003-4827-1048</orcidid><orcidid>https://orcid.org/0000-0001-8569-7684</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0102-7786 |
ispartof | Revista Brasileira de Meteorologia, 2019-06, Vol.34 (2), p.315-323 |
issn | 0102-7786 1982-4351 1982-4351 |
language | eng ; por |
recordid | cdi_proquest_journals_2283261365 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms algoritmos genéticos Artificial neural networks dados multivariados Failures Genetic algorithms Handling Java Lidar Meteorological data Missing data Neural networks redes neurais artificiais software livre |
title | MANNGA: A Robust Method for Gap Filling Meteorological Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MANNGA:%20A%20Robust%20Method%20for%20Gap%20Filling%20Meteorological%20Data&rft.jtitle=Revista%20Brasileira%20de%20Meteorologia&rft.au=Ventura,%20Thiago%20Meirelles&rft.date=2019-06-01&rft.volume=34&rft.issue=2&rft.spage=315&rft.epage=323&rft.pages=315-323&rft.issn=0102-7786&rft.eissn=1982-4351&rft_id=info:doi/10.1590/0102-77863340035&rft_dat=%3Cproquest_doaj_%3E2283261365%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283261365&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4108e5b531144cf194865d0e8fc40f71&rfr_iscdi=true |