Streamwise inclination angle of large wall-attached structures in turbulent boundary layers

The streamwise inclination angle of large wall-attached structures, in the log region of a canonical turbulent boundary layer, is estimated via spectral coherence analysis, and is found to be approximately $45^{\circ }$ . This is consistent with assumptions used in prior attached eddy model-based si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2019-10, Vol.877, Article R4
Hauptverfasser: Deshpande, Rahul, Monty, Jason P., Marusic, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 877
creator Deshpande, Rahul
Monty, Jason P.
Marusic, Ivan
description The streamwise inclination angle of large wall-attached structures, in the log region of a canonical turbulent boundary layer, is estimated via spectral coherence analysis, and is found to be approximately $45^{\circ }$ . This is consistent with assumptions used in prior attached eddy model-based simulations. Given that the inclination angle obtained via standard two-point correlations is influenced by the range of scales in the turbulent flow (Marusic, Phys. Fluids , vol. 13 (3), 2001, pp. 735–743), the present result is obtained by isolating the large wall-attached structures from the rest of the turbulence. This is achieved by introducing a spanwise offset between two hot-wire probes, synchronously measuring the streamwise velocity at a near-wall and log-region reference location, to assess the wall coherence. The methodology is shown to be effective by applying it to data sets across Reynolds numbers, $Re_{\unicode[STIX]{x1D70F}}\sim O(10^{3})$ – $O(10^{6})$ .
doi_str_mv 10.1017/jfm.2019.663
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2283102042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283102042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-3d5b26d0c5e6751d94b0ffbe310707b6a6cae3ed29dc77f4268c98d61953c5ad3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqVw4wEscSVhbSd2fUQVf1IlDsCJg-XYm5IqTYrtqOrb46qcZg8zs6OPkFsGJQOmHjbttuTAdCmlOCMzVkldKFnV52QGwHnBGIdLchXjBoAJ0GpGvj9SQLvddxFpN7i-G2zqxoHaYd0jHVva27BGurd9X9iUrPtBT2MKk0tTwJgzNB_N1OOQaDNOg7fhkEMHDPGaXLS2j3jzr3Py9fz0uXwtVu8vb8vHVeEE16kQvm649OBqlKpmXlcNtG2DgoEC1UgrnUWBnmvvlGorLhdOL7xkuhautl7Myd2pdxfG3wljMptxCkN-aThf5BoOFc-u-5PLhTHGgK3ZhW6b1xoG5ojPZHzmiM9kfOIPcpdksQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283102042</pqid></control><display><type>article</type><title>Streamwise inclination angle of large wall-attached structures in turbulent boundary layers</title><source>Cambridge University Press Journals Complete</source><creator>Deshpande, Rahul ; Monty, Jason P. ; Marusic, Ivan</creator><creatorcontrib>Deshpande, Rahul ; Monty, Jason P. ; Marusic, Ivan</creatorcontrib><description>The streamwise inclination angle of large wall-attached structures, in the log region of a canonical turbulent boundary layer, is estimated via spectral coherence analysis, and is found to be approximately $45^{\circ }$ . This is consistent with assumptions used in prior attached eddy model-based simulations. Given that the inclination angle obtained via standard two-point correlations is influenced by the range of scales in the turbulent flow (Marusic, Phys. Fluids , vol. 13 (3), 2001, pp. 735–743), the present result is obtained by isolating the large wall-attached structures from the rest of the turbulence. This is achieved by introducing a spanwise offset between two hot-wire probes, synchronously measuring the streamwise velocity at a near-wall and log-region reference location, to assess the wall coherence. The methodology is shown to be effective by applying it to data sets across Reynolds numbers, $Re_{\unicode[STIX]{x1D70F}}\sim O(10^{3})$ – $O(10^{6})$ .</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.663</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Boundary layers ; Coherence analysis ; Computational fluid dynamics ; Computer simulation ; Fluid flow ; Fluid mechanics ; Fluids ; Inclination angle ; Reynolds number ; Shear stress ; Simulation ; Structures ; Studies ; Turbulence ; Turbulent boundary layer ; Turbulent flow ; Velocity ; Vortices</subject><ispartof>Journal of fluid mechanics, 2019-10, Vol.877, Article R4</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-3d5b26d0c5e6751d94b0ffbe310707b6a6cae3ed29dc77f4268c98d61953c5ad3</citedby><cites>FETCH-LOGICAL-c329t-3d5b26d0c5e6751d94b0ffbe310707b6a6cae3ed29dc77f4268c98d61953c5ad3</cites><orcidid>0000-0003-2700-8435 ; 0000-0003-2777-2919 ; 0000-0003-4433-2640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Deshpande, Rahul</creatorcontrib><creatorcontrib>Monty, Jason P.</creatorcontrib><creatorcontrib>Marusic, Ivan</creatorcontrib><title>Streamwise inclination angle of large wall-attached structures in turbulent boundary layers</title><title>Journal of fluid mechanics</title><description>The streamwise inclination angle of large wall-attached structures, in the log region of a canonical turbulent boundary layer, is estimated via spectral coherence analysis, and is found to be approximately $45^{\circ }$ . This is consistent with assumptions used in prior attached eddy model-based simulations. Given that the inclination angle obtained via standard two-point correlations is influenced by the range of scales in the turbulent flow (Marusic, Phys. Fluids , vol. 13 (3), 2001, pp. 735–743), the present result is obtained by isolating the large wall-attached structures from the rest of the turbulence. This is achieved by introducing a spanwise offset between two hot-wire probes, synchronously measuring the streamwise velocity at a near-wall and log-region reference location, to assess the wall coherence. The methodology is shown to be effective by applying it to data sets across Reynolds numbers, $Re_{\unicode[STIX]{x1D70F}}\sim O(10^{3})$ – $O(10^{6})$ .</description><subject>Boundary layers</subject><subject>Coherence analysis</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Inclination angle</subject><subject>Reynolds number</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Structures</subject><subject>Studies</subject><subject>Turbulence</subject><subject>Turbulent boundary layer</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Vortices</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkM1OwzAQhC0EEqVw4wEscSVhbSd2fUQVf1IlDsCJg-XYm5IqTYrtqOrb46qcZg8zs6OPkFsGJQOmHjbttuTAdCmlOCMzVkldKFnV52QGwHnBGIdLchXjBoAJ0GpGvj9SQLvddxFpN7i-G2zqxoHaYd0jHVva27BGurd9X9iUrPtBT2MKk0tTwJgzNB_N1OOQaDNOg7fhkEMHDPGaXLS2j3jzr3Py9fz0uXwtVu8vb8vHVeEE16kQvm649OBqlKpmXlcNtG2DgoEC1UgrnUWBnmvvlGorLhdOL7xkuhautl7Myd2pdxfG3wljMptxCkN-aThf5BoOFc-u-5PLhTHGgK3ZhW6b1xoG5ojPZHzmiM9kfOIPcpdksQ</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>Deshpande, Rahul</creator><creator>Monty, Jason P.</creator><creator>Marusic, Ivan</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2700-8435</orcidid><orcidid>https://orcid.org/0000-0003-2777-2919</orcidid><orcidid>https://orcid.org/0000-0003-4433-2640</orcidid></search><sort><creationdate>20191025</creationdate><title>Streamwise inclination angle of large wall-attached structures in turbulent boundary layers</title><author>Deshpande, Rahul ; Monty, Jason P. ; Marusic, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-3d5b26d0c5e6751d94b0ffbe310707b6a6cae3ed29dc77f4268c98d61953c5ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary layers</topic><topic>Coherence analysis</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Inclination angle</topic><topic>Reynolds number</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Structures</topic><topic>Studies</topic><topic>Turbulence</topic><topic>Turbulent boundary layer</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deshpande, Rahul</creatorcontrib><creatorcontrib>Monty, Jason P.</creatorcontrib><creatorcontrib>Marusic, Ivan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deshpande, Rahul</au><au>Monty, Jason P.</au><au>Marusic, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Streamwise inclination angle of large wall-attached structures in turbulent boundary layers</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2019-10-25</date><risdate>2019</risdate><volume>877</volume><artnum>R4</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The streamwise inclination angle of large wall-attached structures, in the log region of a canonical turbulent boundary layer, is estimated via spectral coherence analysis, and is found to be approximately $45^{\circ }$ . This is consistent with assumptions used in prior attached eddy model-based simulations. Given that the inclination angle obtained via standard two-point correlations is influenced by the range of scales in the turbulent flow (Marusic, Phys. Fluids , vol. 13 (3), 2001, pp. 735–743), the present result is obtained by isolating the large wall-attached structures from the rest of the turbulence. This is achieved by introducing a spanwise offset between two hot-wire probes, synchronously measuring the streamwise velocity at a near-wall and log-region reference location, to assess the wall coherence. The methodology is shown to be effective by applying it to data sets across Reynolds numbers, $Re_{\unicode[STIX]{x1D70F}}\sim O(10^{3})$ – $O(10^{6})$ .</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.663</doi><orcidid>https://orcid.org/0000-0003-2700-8435</orcidid><orcidid>https://orcid.org/0000-0003-2777-2919</orcidid><orcidid>https://orcid.org/0000-0003-4433-2640</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2019-10, Vol.877, Article R4
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2283102042
source Cambridge University Press Journals Complete
subjects Boundary layers
Coherence analysis
Computational fluid dynamics
Computer simulation
Fluid flow
Fluid mechanics
Fluids
Inclination angle
Reynolds number
Shear stress
Simulation
Structures
Studies
Turbulence
Turbulent boundary layer
Turbulent flow
Velocity
Vortices
title Streamwise inclination angle of large wall-attached structures in turbulent boundary layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Streamwise%20inclination%20angle%20of%20large%20wall-attached%20structures%20in%20turbulent%20boundary%20layers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Deshpande,%20Rahul&rft.date=2019-10-25&rft.volume=877&rft.artnum=R4&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.663&rft_dat=%3Cproquest_cross%3E2283102042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283102042&rft_id=info:pmid/&rfr_iscdi=true