Combustion of CL-20 cocrystals

Combustion behavior, flame structure, and thermal decomposition of bimolecular crystals of hexanitrohexaazaisowurtzitane (CL-20) with glycerol triacetate (GTA), tris[1,2,5]oxadiazolo[3,4-b:3′,4′-d:3″,4″-f]azepine-7-amine (ATFAz), 4,4′′-dinitro-ter-furazan (BNTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2019-09, Vol.207, p.51-62
Hauptverfasser: Sinditskii, Valery P., Chernyi, Anton N., Egorshev, Viacheslav Y., Dashko, Dmitriy V., Goncharov, Tel'man K., Shishov, Nikolay I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue
container_start_page 51
container_title Combustion and flame
container_volume 207
creator Sinditskii, Valery P.
Chernyi, Anton N.
Egorshev, Viacheslav Y.
Dashko, Dmitriy V.
Goncharov, Tel'man K.
Shishov, Nikolay I.
description Combustion behavior, flame structure, and thermal decomposition of bimolecular crystals of hexanitrohexaazaisowurtzitane (CL-20) with glycerol triacetate (GTA), tris[1,2,5]oxadiazolo[3,4-b:3′,4′-d:3″,4″-f]azepine-7-amine (ATFAz), 4,4′′-dinitro-ter-furazan (BNTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan (OTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan-1-oxide (OTFO) have been studied by using a constant-pressure bomb, microthermocouple technique, and TG/DSC analysis. It has been found that the introduction of volatile and thermally stable compounds into the composition with CL-20 brought about unexpected results: first, the thermally stable component decreased the thermal stability of CL-20, and second, even twofold dilution of rapidly-burning CL-20 with slow-burning compound may practically does not change the burning rate of the former. It was suggested that a reason for the observed phenomena might be amorphous CL-20 which remains after evaporation of the volatile component in the combustion wave. The above assumption was confirmed by combustion modeling of bimolecular crystals in a wide pressure interval. It has been found that the combustion mechanism of the CL-20 cocrystals depends both on the burning rate of the second component and its volatility. Depending on these parameters, several combustion models of cocrystals are implemented: the burning rate is determined by (1) the CL-20 heat release kinetics at its boiling temperature, (2) the CL-20 heat release kinetics at the boiling point of the second component and (3) by the heat flow from the gas phase. It is abundantly clear that all these combustion mechanisms can be realized in real CL-20-based propellants.
doi_str_mv 10.1016/j.combustflame.2019.05.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2282442597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218019302524</els_id><sourcerecordid>2282442597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-337b2eb75f13c72bf5cd16b51f538581392a5f80486f17388ca85ae096d5d92d3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-BVn03Doz6bSpN6mfUPCi59CmCbTsbtakK-y_t0s9ePT0Xt7nHeYR4gYhRcD8bkiN37T7OLp1s7EpAZYpcAqyPBELZM4TKglPxQIAISFUcC4uYhwAoMikXIjrauZ7v115t6rqhGBlvAmHODbreCnO3BT26jeX4vP56aN6Ter3l7fqoU6MZBoTKYuWbFuwQ2kKah2bDvOW0bFUrFCW1LBTkKncYSGVMo3ixkKZd9yV1MmluJ13d8F_7W0c9eD3YTud1ESKsoy4LKbW_dwywccYrNO70G-acNAI-uhDD_qvD330oYH15GOCH2fYTn989zboaHq7NbbrgzWj7nz_n5kfy_dtWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282442597</pqid></control><display><type>article</type><title>Combustion of CL-20 cocrystals</title><source>Elsevier ScienceDirect Journals</source><creator>Sinditskii, Valery P. ; Chernyi, Anton N. ; Egorshev, Viacheslav Y. ; Dashko, Dmitriy V. ; Goncharov, Tel'man K. ; Shishov, Nikolay I.</creator><creatorcontrib>Sinditskii, Valery P. ; Chernyi, Anton N. ; Egorshev, Viacheslav Y. ; Dashko, Dmitriy V. ; Goncharov, Tel'man K. ; Shishov, Nikolay I.</creatorcontrib><description>Combustion behavior, flame structure, and thermal decomposition of bimolecular crystals of hexanitrohexaazaisowurtzitane (CL-20) with glycerol triacetate (GTA), tris[1,2,5]oxadiazolo[3,4-b:3′,4′-d:3″,4″-f]azepine-7-amine (ATFAz), 4,4′′-dinitro-ter-furazan (BNTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan (OTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan-1-oxide (OTFO) have been studied by using a constant-pressure bomb, microthermocouple technique, and TG/DSC analysis. It has been found that the introduction of volatile and thermally stable compounds into the composition with CL-20 brought about unexpected results: first, the thermally stable component decreased the thermal stability of CL-20, and second, even twofold dilution of rapidly-burning CL-20 with slow-burning compound may practically does not change the burning rate of the former. It was suggested that a reason for the observed phenomena might be amorphous CL-20 which remains after evaporation of the volatile component in the combustion wave. The above assumption was confirmed by combustion modeling of bimolecular crystals in a wide pressure interval. It has been found that the combustion mechanism of the CL-20 cocrystals depends both on the burning rate of the second component and its volatility. Depending on these parameters, several combustion models of cocrystals are implemented: the burning rate is determined by (1) the CL-20 heat release kinetics at its boiling temperature, (2) the CL-20 heat release kinetics at the boiling point of the second component and (3) by the heat flow from the gas phase. It is abundantly clear that all these combustion mechanisms can be realized in real CL-20-based propellants.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2019.05.039</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>4,4′′-dinitro-ter-furazan ; Boiling points ; Burning rate ; Cocrystals ; Combustion ; Crystal structure ; Decomposition ; Dilution ; Flame structure ; Heat transmission ; Hexanitrohexaazaisowurtzitane ; oxepinotrisfurazan ; oxepinotrisfurazan-1-oxide ; Thermal decomposition ; Thermal stability ; trisoxadiazoloazepine-7-amine ; Vapor phases ; Volatility</subject><ispartof>Combustion and flame, 2019-09, Vol.207, p.51-62</ispartof><rights>2019 The Combustion Institute</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-337b2eb75f13c72bf5cd16b51f538581392a5f80486f17388ca85ae096d5d92d3</citedby><cites>FETCH-LOGICAL-c352t-337b2eb75f13c72bf5cd16b51f538581392a5f80486f17388ca85ae096d5d92d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218019302524$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sinditskii, Valery P.</creatorcontrib><creatorcontrib>Chernyi, Anton N.</creatorcontrib><creatorcontrib>Egorshev, Viacheslav Y.</creatorcontrib><creatorcontrib>Dashko, Dmitriy V.</creatorcontrib><creatorcontrib>Goncharov, Tel'man K.</creatorcontrib><creatorcontrib>Shishov, Nikolay I.</creatorcontrib><title>Combustion of CL-20 cocrystals</title><title>Combustion and flame</title><description>Combustion behavior, flame structure, and thermal decomposition of bimolecular crystals of hexanitrohexaazaisowurtzitane (CL-20) with glycerol triacetate (GTA), tris[1,2,5]oxadiazolo[3,4-b:3′,4′-d:3″,4″-f]azepine-7-amine (ATFAz), 4,4′′-dinitro-ter-furazan (BNTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan (OTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan-1-oxide (OTFO) have been studied by using a constant-pressure bomb, microthermocouple technique, and TG/DSC analysis. It has been found that the introduction of volatile and thermally stable compounds into the composition with CL-20 brought about unexpected results: first, the thermally stable component decreased the thermal stability of CL-20, and second, even twofold dilution of rapidly-burning CL-20 with slow-burning compound may practically does not change the burning rate of the former. It was suggested that a reason for the observed phenomena might be amorphous CL-20 which remains after evaporation of the volatile component in the combustion wave. The above assumption was confirmed by combustion modeling of bimolecular crystals in a wide pressure interval. It has been found that the combustion mechanism of the CL-20 cocrystals depends both on the burning rate of the second component and its volatility. Depending on these parameters, several combustion models of cocrystals are implemented: the burning rate is determined by (1) the CL-20 heat release kinetics at its boiling temperature, (2) the CL-20 heat release kinetics at the boiling point of the second component and (3) by the heat flow from the gas phase. It is abundantly clear that all these combustion mechanisms can be realized in real CL-20-based propellants.</description><subject>4,4′′-dinitro-ter-furazan</subject><subject>Boiling points</subject><subject>Burning rate</subject><subject>Cocrystals</subject><subject>Combustion</subject><subject>Crystal structure</subject><subject>Decomposition</subject><subject>Dilution</subject><subject>Flame structure</subject><subject>Heat transmission</subject><subject>Hexanitrohexaazaisowurtzitane</subject><subject>oxepinotrisfurazan</subject><subject>oxepinotrisfurazan-1-oxide</subject><subject>Thermal decomposition</subject><subject>Thermal stability</subject><subject>trisoxadiazoloazepine-7-amine</subject><subject>Vapor phases</subject><subject>Volatility</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-BVn03Doz6bSpN6mfUPCi59CmCbTsbtakK-y_t0s9ePT0Xt7nHeYR4gYhRcD8bkiN37T7OLp1s7EpAZYpcAqyPBELZM4TKglPxQIAISFUcC4uYhwAoMikXIjrauZ7v115t6rqhGBlvAmHODbreCnO3BT26jeX4vP56aN6Ter3l7fqoU6MZBoTKYuWbFuwQ2kKah2bDvOW0bFUrFCW1LBTkKncYSGVMo3ixkKZd9yV1MmluJ13d8F_7W0c9eD3YTud1ESKsoy4LKbW_dwywccYrNO70G-acNAI-uhDD_qvD330oYH15GOCH2fYTn989zboaHq7NbbrgzWj7nz_n5kfy_dtWQ</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Sinditskii, Valery P.</creator><creator>Chernyi, Anton N.</creator><creator>Egorshev, Viacheslav Y.</creator><creator>Dashko, Dmitriy V.</creator><creator>Goncharov, Tel'man K.</creator><creator>Shishov, Nikolay I.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201909</creationdate><title>Combustion of CL-20 cocrystals</title><author>Sinditskii, Valery P. ; Chernyi, Anton N. ; Egorshev, Viacheslav Y. ; Dashko, Dmitriy V. ; Goncharov, Tel'man K. ; Shishov, Nikolay I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-337b2eb75f13c72bf5cd16b51f538581392a5f80486f17388ca85ae096d5d92d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>4,4′′-dinitro-ter-furazan</topic><topic>Boiling points</topic><topic>Burning rate</topic><topic>Cocrystals</topic><topic>Combustion</topic><topic>Crystal structure</topic><topic>Decomposition</topic><topic>Dilution</topic><topic>Flame structure</topic><topic>Heat transmission</topic><topic>Hexanitrohexaazaisowurtzitane</topic><topic>oxepinotrisfurazan</topic><topic>oxepinotrisfurazan-1-oxide</topic><topic>Thermal decomposition</topic><topic>Thermal stability</topic><topic>trisoxadiazoloazepine-7-amine</topic><topic>Vapor phases</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinditskii, Valery P.</creatorcontrib><creatorcontrib>Chernyi, Anton N.</creatorcontrib><creatorcontrib>Egorshev, Viacheslav Y.</creatorcontrib><creatorcontrib>Dashko, Dmitriy V.</creatorcontrib><creatorcontrib>Goncharov, Tel'man K.</creatorcontrib><creatorcontrib>Shishov, Nikolay I.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinditskii, Valery P.</au><au>Chernyi, Anton N.</au><au>Egorshev, Viacheslav Y.</au><au>Dashko, Dmitriy V.</au><au>Goncharov, Tel'man K.</au><au>Shishov, Nikolay I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combustion of CL-20 cocrystals</atitle><jtitle>Combustion and flame</jtitle><date>2019-09</date><risdate>2019</risdate><volume>207</volume><spage>51</spage><epage>62</epage><pages>51-62</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Combustion behavior, flame structure, and thermal decomposition of bimolecular crystals of hexanitrohexaazaisowurtzitane (CL-20) with glycerol triacetate (GTA), tris[1,2,5]oxadiazolo[3,4-b:3′,4′-d:3″,4″-f]azepine-7-amine (ATFAz), 4,4′′-dinitro-ter-furazan (BNTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan (OTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan-1-oxide (OTFO) have been studied by using a constant-pressure bomb, microthermocouple technique, and TG/DSC analysis. It has been found that the introduction of volatile and thermally stable compounds into the composition with CL-20 brought about unexpected results: first, the thermally stable component decreased the thermal stability of CL-20, and second, even twofold dilution of rapidly-burning CL-20 with slow-burning compound may practically does not change the burning rate of the former. It was suggested that a reason for the observed phenomena might be amorphous CL-20 which remains after evaporation of the volatile component in the combustion wave. The above assumption was confirmed by combustion modeling of bimolecular crystals in a wide pressure interval. It has been found that the combustion mechanism of the CL-20 cocrystals depends both on the burning rate of the second component and its volatility. Depending on these parameters, several combustion models of cocrystals are implemented: the burning rate is determined by (1) the CL-20 heat release kinetics at its boiling temperature, (2) the CL-20 heat release kinetics at the boiling point of the second component and (3) by the heat flow from the gas phase. It is abundantly clear that all these combustion mechanisms can be realized in real CL-20-based propellants.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2019.05.039</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2019-09, Vol.207, p.51-62
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_journals_2282442597
source Elsevier ScienceDirect Journals
subjects 4,4′′-dinitro-ter-furazan
Boiling points
Burning rate
Cocrystals
Combustion
Crystal structure
Decomposition
Dilution
Flame structure
Heat transmission
Hexanitrohexaazaisowurtzitane
oxepinotrisfurazan
oxepinotrisfurazan-1-oxide
Thermal decomposition
Thermal stability
trisoxadiazoloazepine-7-amine
Vapor phases
Volatility
title Combustion of CL-20 cocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combustion%20of%20CL-20%20cocrystals&rft.jtitle=Combustion%20and%20flame&rft.au=Sinditskii,%20Valery%20P.&rft.date=2019-09&rft.volume=207&rft.spage=51&rft.epage=62&rft.pages=51-62&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2019.05.039&rft_dat=%3Cproquest_cross%3E2282442597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2282442597&rft_id=info:pmid/&rft_els_id=S0010218019302524&rfr_iscdi=true