Combustion of CL-20 cocrystals
Combustion behavior, flame structure, and thermal decomposition of bimolecular crystals of hexanitrohexaazaisowurtzitane (CL-20) with glycerol triacetate (GTA), tris[1,2,5]oxadiazolo[3,4-b:3′,4′-d:3″,4″-f]azepine-7-amine (ATFAz), 4,4′′-dinitro-ter-furazan (BNTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfur...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2019-09, Vol.207, p.51-62 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | |
container_start_page | 51 |
container_title | Combustion and flame |
container_volume | 207 |
creator | Sinditskii, Valery P. Chernyi, Anton N. Egorshev, Viacheslav Y. Dashko, Dmitriy V. Goncharov, Tel'man K. Shishov, Nikolay I. |
description | Combustion behavior, flame structure, and thermal decomposition of bimolecular crystals of hexanitrohexaazaisowurtzitane (CL-20) with glycerol triacetate (GTA), tris[1,2,5]oxadiazolo[3,4-b:3′,4′-d:3″,4″-f]azepine-7-amine (ATFAz), 4,4′′-dinitro-ter-furazan (BNTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan (OTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan-1-oxide (OTFO) have been studied by using a constant-pressure bomb, microthermocouple technique, and TG/DSC analysis. It has been found that the introduction of volatile and thermally stable compounds into the composition with CL-20 brought about unexpected results: first, the thermally stable component decreased the thermal stability of CL-20, and second, even twofold dilution of rapidly-burning CL-20 with slow-burning compound may practically does not change the burning rate of the former. It was suggested that a reason for the observed phenomena might be amorphous CL-20 which remains after evaporation of the volatile component in the combustion wave. The above assumption was confirmed by combustion modeling of bimolecular crystals in a wide pressure interval. It has been found that the combustion mechanism of the CL-20 cocrystals depends both on the burning rate of the second component and its volatility. Depending on these parameters, several combustion models of cocrystals are implemented: the burning rate is determined by (1) the CL-20 heat release kinetics at its boiling temperature, (2) the CL-20 heat release kinetics at the boiling point of the second component and (3) by the heat flow from the gas phase. It is abundantly clear that all these combustion mechanisms can be realized in real CL-20-based propellants. |
doi_str_mv | 10.1016/j.combustflame.2019.05.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2282442597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218019302524</els_id><sourcerecordid>2282442597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-337b2eb75f13c72bf5cd16b51f538581392a5f80486f17388ca85ae096d5d92d3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-BVn03Doz6bSpN6mfUPCi59CmCbTsbtakK-y_t0s9ePT0Xt7nHeYR4gYhRcD8bkiN37T7OLp1s7EpAZYpcAqyPBELZM4TKglPxQIAISFUcC4uYhwAoMikXIjrauZ7v115t6rqhGBlvAmHODbreCnO3BT26jeX4vP56aN6Ter3l7fqoU6MZBoTKYuWbFuwQ2kKah2bDvOW0bFUrFCW1LBTkKncYSGVMo3ixkKZd9yV1MmluJ13d8F_7W0c9eD3YTud1ESKsoy4LKbW_dwywccYrNO70G-acNAI-uhDD_qvD330oYH15GOCH2fYTn989zboaHq7NbbrgzWj7nz_n5kfy_dtWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282442597</pqid></control><display><type>article</type><title>Combustion of CL-20 cocrystals</title><source>Elsevier ScienceDirect Journals</source><creator>Sinditskii, Valery P. ; Chernyi, Anton N. ; Egorshev, Viacheslav Y. ; Dashko, Dmitriy V. ; Goncharov, Tel'man K. ; Shishov, Nikolay I.</creator><creatorcontrib>Sinditskii, Valery P. ; Chernyi, Anton N. ; Egorshev, Viacheslav Y. ; Dashko, Dmitriy V. ; Goncharov, Tel'man K. ; Shishov, Nikolay I.</creatorcontrib><description>Combustion behavior, flame structure, and thermal decomposition of bimolecular crystals of hexanitrohexaazaisowurtzitane (CL-20) with glycerol triacetate (GTA), tris[1,2,5]oxadiazolo[3,4-b:3′,4′-d:3″,4″-f]azepine-7-amine (ATFAz), 4,4′′-dinitro-ter-furazan (BNTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan (OTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan-1-oxide (OTFO) have been studied by using a constant-pressure bomb, microthermocouple technique, and TG/DSC analysis. It has been found that the introduction of volatile and thermally stable compounds into the composition with CL-20 brought about unexpected results: first, the thermally stable component decreased the thermal stability of CL-20, and second, even twofold dilution of rapidly-burning CL-20 with slow-burning compound may practically does not change the burning rate of the former. It was suggested that a reason for the observed phenomena might be amorphous CL-20 which remains after evaporation of the volatile component in the combustion wave. The above assumption was confirmed by combustion modeling of bimolecular crystals in a wide pressure interval. It has been found that the combustion mechanism of the CL-20 cocrystals depends both on the burning rate of the second component and its volatility. Depending on these parameters, several combustion models of cocrystals are implemented: the burning rate is determined by (1) the CL-20 heat release kinetics at its boiling temperature, (2) the CL-20 heat release kinetics at the boiling point of the second component and (3) by the heat flow from the gas phase. It is abundantly clear that all these combustion mechanisms can be realized in real CL-20-based propellants.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2019.05.039</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>4,4′′-dinitro-ter-furazan ; Boiling points ; Burning rate ; Cocrystals ; Combustion ; Crystal structure ; Decomposition ; Dilution ; Flame structure ; Heat transmission ; Hexanitrohexaazaisowurtzitane ; oxepinotrisfurazan ; oxepinotrisfurazan-1-oxide ; Thermal decomposition ; Thermal stability ; trisoxadiazoloazepine-7-amine ; Vapor phases ; Volatility</subject><ispartof>Combustion and flame, 2019-09, Vol.207, p.51-62</ispartof><rights>2019 The Combustion Institute</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-337b2eb75f13c72bf5cd16b51f538581392a5f80486f17388ca85ae096d5d92d3</citedby><cites>FETCH-LOGICAL-c352t-337b2eb75f13c72bf5cd16b51f538581392a5f80486f17388ca85ae096d5d92d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218019302524$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sinditskii, Valery P.</creatorcontrib><creatorcontrib>Chernyi, Anton N.</creatorcontrib><creatorcontrib>Egorshev, Viacheslav Y.</creatorcontrib><creatorcontrib>Dashko, Dmitriy V.</creatorcontrib><creatorcontrib>Goncharov, Tel'man K.</creatorcontrib><creatorcontrib>Shishov, Nikolay I.</creatorcontrib><title>Combustion of CL-20 cocrystals</title><title>Combustion and flame</title><description>Combustion behavior, flame structure, and thermal decomposition of bimolecular crystals of hexanitrohexaazaisowurtzitane (CL-20) with glycerol triacetate (GTA), tris[1,2,5]oxadiazolo[3,4-b:3′,4′-d:3″,4″-f]azepine-7-amine (ATFAz), 4,4′′-dinitro-ter-furazan (BNTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan (OTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan-1-oxide (OTFO) have been studied by using a constant-pressure bomb, microthermocouple technique, and TG/DSC analysis. It has been found that the introduction of volatile and thermally stable compounds into the composition with CL-20 brought about unexpected results: first, the thermally stable component decreased the thermal stability of CL-20, and second, even twofold dilution of rapidly-burning CL-20 with slow-burning compound may practically does not change the burning rate of the former. It was suggested that a reason for the observed phenomena might be amorphous CL-20 which remains after evaporation of the volatile component in the combustion wave. The above assumption was confirmed by combustion modeling of bimolecular crystals in a wide pressure interval. It has been found that the combustion mechanism of the CL-20 cocrystals depends both on the burning rate of the second component and its volatility. Depending on these parameters, several combustion models of cocrystals are implemented: the burning rate is determined by (1) the CL-20 heat release kinetics at its boiling temperature, (2) the CL-20 heat release kinetics at the boiling point of the second component and (3) by the heat flow from the gas phase. It is abundantly clear that all these combustion mechanisms can be realized in real CL-20-based propellants.</description><subject>4,4′′-dinitro-ter-furazan</subject><subject>Boiling points</subject><subject>Burning rate</subject><subject>Cocrystals</subject><subject>Combustion</subject><subject>Crystal structure</subject><subject>Decomposition</subject><subject>Dilution</subject><subject>Flame structure</subject><subject>Heat transmission</subject><subject>Hexanitrohexaazaisowurtzitane</subject><subject>oxepinotrisfurazan</subject><subject>oxepinotrisfurazan-1-oxide</subject><subject>Thermal decomposition</subject><subject>Thermal stability</subject><subject>trisoxadiazoloazepine-7-amine</subject><subject>Vapor phases</subject><subject>Volatility</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-BVn03Doz6bSpN6mfUPCi59CmCbTsbtakK-y_t0s9ePT0Xt7nHeYR4gYhRcD8bkiN37T7OLp1s7EpAZYpcAqyPBELZM4TKglPxQIAISFUcC4uYhwAoMikXIjrauZ7v115t6rqhGBlvAmHODbreCnO3BT26jeX4vP56aN6Ter3l7fqoU6MZBoTKYuWbFuwQ2kKah2bDvOW0bFUrFCW1LBTkKncYSGVMo3ixkKZd9yV1MmluJ13d8F_7W0c9eD3YTud1ESKsoy4LKbW_dwywccYrNO70G-acNAI-uhDD_qvD330oYH15GOCH2fYTn989zboaHq7NbbrgzWj7nz_n5kfy_dtWQ</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Sinditskii, Valery P.</creator><creator>Chernyi, Anton N.</creator><creator>Egorshev, Viacheslav Y.</creator><creator>Dashko, Dmitriy V.</creator><creator>Goncharov, Tel'man K.</creator><creator>Shishov, Nikolay I.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201909</creationdate><title>Combustion of CL-20 cocrystals</title><author>Sinditskii, Valery P. ; Chernyi, Anton N. ; Egorshev, Viacheslav Y. ; Dashko, Dmitriy V. ; Goncharov, Tel'man K. ; Shishov, Nikolay I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-337b2eb75f13c72bf5cd16b51f538581392a5f80486f17388ca85ae096d5d92d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>4,4′′-dinitro-ter-furazan</topic><topic>Boiling points</topic><topic>Burning rate</topic><topic>Cocrystals</topic><topic>Combustion</topic><topic>Crystal structure</topic><topic>Decomposition</topic><topic>Dilution</topic><topic>Flame structure</topic><topic>Heat transmission</topic><topic>Hexanitrohexaazaisowurtzitane</topic><topic>oxepinotrisfurazan</topic><topic>oxepinotrisfurazan-1-oxide</topic><topic>Thermal decomposition</topic><topic>Thermal stability</topic><topic>trisoxadiazoloazepine-7-amine</topic><topic>Vapor phases</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinditskii, Valery P.</creatorcontrib><creatorcontrib>Chernyi, Anton N.</creatorcontrib><creatorcontrib>Egorshev, Viacheslav Y.</creatorcontrib><creatorcontrib>Dashko, Dmitriy V.</creatorcontrib><creatorcontrib>Goncharov, Tel'man K.</creatorcontrib><creatorcontrib>Shishov, Nikolay I.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinditskii, Valery P.</au><au>Chernyi, Anton N.</au><au>Egorshev, Viacheslav Y.</au><au>Dashko, Dmitriy V.</au><au>Goncharov, Tel'man K.</au><au>Shishov, Nikolay I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combustion of CL-20 cocrystals</atitle><jtitle>Combustion and flame</jtitle><date>2019-09</date><risdate>2019</risdate><volume>207</volume><spage>51</spage><epage>62</epage><pages>51-62</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Combustion behavior, flame structure, and thermal decomposition of bimolecular crystals of hexanitrohexaazaisowurtzitane (CL-20) with glycerol triacetate (GTA), tris[1,2,5]oxadiazolo[3,4-b:3′,4′-d:3″,4″-f]azepine-7-amine (ATFAz), 4,4′′-dinitro-ter-furazan (BNTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan (OTF), oxepino[2,3-c:4,5-c′:6,7-c′′]trisfurazan-1-oxide (OTFO) have been studied by using a constant-pressure bomb, microthermocouple technique, and TG/DSC analysis. It has been found that the introduction of volatile and thermally stable compounds into the composition with CL-20 brought about unexpected results: first, the thermally stable component decreased the thermal stability of CL-20, and second, even twofold dilution of rapidly-burning CL-20 with slow-burning compound may practically does not change the burning rate of the former. It was suggested that a reason for the observed phenomena might be amorphous CL-20 which remains after evaporation of the volatile component in the combustion wave. The above assumption was confirmed by combustion modeling of bimolecular crystals in a wide pressure interval. It has been found that the combustion mechanism of the CL-20 cocrystals depends both on the burning rate of the second component and its volatility. Depending on these parameters, several combustion models of cocrystals are implemented: the burning rate is determined by (1) the CL-20 heat release kinetics at its boiling temperature, (2) the CL-20 heat release kinetics at the boiling point of the second component and (3) by the heat flow from the gas phase. It is abundantly clear that all these combustion mechanisms can be realized in real CL-20-based propellants.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2019.05.039</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2019-09, Vol.207, p.51-62 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_proquest_journals_2282442597 |
source | Elsevier ScienceDirect Journals |
subjects | 4,4′′-dinitro-ter-furazan Boiling points Burning rate Cocrystals Combustion Crystal structure Decomposition Dilution Flame structure Heat transmission Hexanitrohexaazaisowurtzitane oxepinotrisfurazan oxepinotrisfurazan-1-oxide Thermal decomposition Thermal stability trisoxadiazoloazepine-7-amine Vapor phases Volatility |
title | Combustion of CL-20 cocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combustion%20of%20CL-20%20cocrystals&rft.jtitle=Combustion%20and%20flame&rft.au=Sinditskii,%20Valery%20P.&rft.date=2019-09&rft.volume=207&rft.spage=51&rft.epage=62&rft.pages=51-62&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2019.05.039&rft_dat=%3Cproquest_cross%3E2282442597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2282442597&rft_id=info:pmid/&rft_els_id=S0010218019302524&rfr_iscdi=true |