Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC)
We describe the simulated data sample for the Photometric Large Synoptic Survey Telescope (LSST) Astronomical Time Series Classification Challenge (PLAsTiCC), a publicly available challenge to classify transient and variable events that will be observed by the LSST, a new facility expected to start...
Gespeichert in:
Veröffentlicht in: | Publ.Astron.Soc.Pac 2019-09, Vol.131 (1003), p.1-35 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1003 |
container_start_page | 1 |
container_title | Publ.Astron.Soc.Pac |
container_volume | 131 |
creator | Kessler, R. Narayan, G. Avelino, A. Bachelet, E. Biswas, R. Brown, P. J. Chernoff, D. F. Connolly, A. J. Dai, M. Daniel, S. Stefano, R. Di Drout, M. R. Galbany, L. González-Gaitán, S. Graham, M. L. Hlo ek, R. Ishida, E. E. O. Guillochon, J. Jha, S. W. Jones, D. O. Mandel, K. S. Muthukrishna, D. O'Grady, A. Peters, C. M. Pierel, J. R. Ponder, K. A. Prša, A. Rodney, S. Villar, V. A. |
description | We describe the simulated data sample for the Photometric Large Synoptic Survey Telescope (LSST) Astronomical Time Series Classification Challenge (PLAsTiCC), a publicly available challenge to classify transient and variable events that will be observed by the LSST, a new facility expected to start in the early 2020s. The challenge was hosted by Kaggle, ran from 2018 September 28 to December 17, and included 1094 teams competing for prizes. Here we provide details of the 18 transient and variable source models, which were not revealed until after the challenge, and release the model libraries at https://doi.org/10.5281/zenodo.2612896. We describe the LSST Operations Simulator used to predict realistic observing conditions, and we describe the publicly available SNANA simulation code used to transform the models into observed fluxes and uncertainties in the LSST passbands (ugrizy). Although PLAsTiCC has finished, the publicly available models and simulation tools are being used within the astronomy community to further improve classification, and to study contamination in photometrically identified samples of SN Ia used to measure properties of dark energy. Our simulation framework will continue serving as a platform to improve the PLAsTiCC models, and to develop new models. |
doi_str_mv | 10.1088/1538-3873/ab26f1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2282435299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26874441</jstor_id><sourcerecordid>26874441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-9f404baac14e562656941de9c07db60f78617f10ebc9443934e7452f8db49313</originalsourceid><addsrcrecordid>eNp1kcFq3DAURUVooNMk-24Cgm4aqJMnWbalpXHSpuDSwJhshWxLGQ22NZHslP59bVym6SIrweW8Iz1dhD4SuCbA-Q1JYh7FPItvVE1TQ07Q5hi9QxsAYFFKObxHH0LYAxDCCWxQ98O1ugtYDS3e2n7q1GjdELBxHo87jR92bnS9Hr1tcLndVjgPo3eD622jOlzZXuOt9lYHXHQqBGvmfDHgYqe6Tg9PGn9-KPNQ2aK4OkenRnVBX_w9z1D19a4q7qPy57fvRV5GTQJijIRhwGqlGsJ0ktI0SQUjrRYNZG2dgsl4SjJDQNeNYCwWMdMZS6jhbc1ETOIz9GXVhl_6MNXy4G2v_G_plJW39jGXzj_JMEmSkVk841crPr_4P_Y-L-WSAZ1_GET2srCfVvbg3fOkwyj3bvLDvIyklFMWJ1SImYKVarwLwWtz1BKQS1tyqUYu1ci1rXnkch3Zh9H5I09TnjHGXu1k3eHfnW_q_gC9YZ14</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282435299</pqid></control><display><type>article</type><title>Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC)</title><source>IOP Publishing Journals</source><source>Jstor Complete Legacy</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Kessler, R. ; Narayan, G. ; Avelino, A. ; Bachelet, E. ; Biswas, R. ; Brown, P. J. ; Chernoff, D. F. ; Connolly, A. J. ; Dai, M. ; Daniel, S. ; Stefano, R. Di ; Drout, M. R. ; Galbany, L. ; González-Gaitán, S. ; Graham, M. L. ; Hlo ek, R. ; Ishida, E. E. O. ; Guillochon, J. ; Jha, S. W. ; Jones, D. O. ; Mandel, K. S. ; Muthukrishna, D. ; O'Grady, A. ; Peters, C. M. ; Pierel, J. R. ; Ponder, K. A. ; Prša, A. ; Rodney, S. ; Villar, V. A.</creator><creatorcontrib>Kessler, R. ; Narayan, G. ; Avelino, A. ; Bachelet, E. ; Biswas, R. ; Brown, P. J. ; Chernoff, D. F. ; Connolly, A. J. ; Dai, M. ; Daniel, S. ; Stefano, R. Di ; Drout, M. R. ; Galbany, L. ; González-Gaitán, S. ; Graham, M. L. ; Hlo ek, R. ; Ishida, E. E. O. ; Guillochon, J. ; Jha, S. W. ; Jones, D. O. ; Mandel, K. S. ; Muthukrishna, D. ; O'Grady, A. ; Peters, C. M. ; Pierel, J. R. ; Ponder, K. A. ; Prša, A. ; Rodney, S. ; Villar, V. A. ; The LSST Dark Energy Science Collaboration and the Transient and Variable Stars Science Collaboration</creatorcontrib><description>We describe the simulated data sample for the Photometric Large Synoptic Survey Telescope (LSST) Astronomical Time Series Classification Challenge (PLAsTiCC), a publicly available challenge to classify transient and variable events that will be observed by the LSST, a new facility expected to start in the early 2020s. The challenge was hosted by Kaggle, ran from 2018 September 28 to December 17, and included 1094 teams competing for prizes. Here we provide details of the 18 transient and variable source models, which were not revealed until after the challenge, and release the model libraries at https://doi.org/10.5281/zenodo.2612896. We describe the LSST Operations Simulator used to predict realistic observing conditions, and we describe the publicly available SNANA simulation code used to transform the models into observed fluxes and uncertainties in the LSST passbands (ugrizy). Although PLAsTiCC has finished, the publicly available models and simulation tools are being used within the astronomy community to further improve classification, and to study contamination in photometrically identified samples of SN Ia used to measure properties of dark energy. Our simulation framework will continue serving as a platform to improve the PLAsTiCC models, and to develop new models.</description><identifier>ISSN: 0004-6280</identifier><identifier>ISSN: 1538-3873</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1088/1538-3873/ab26f1</identifier><language>eng</language><publisher>Philadelphia: The Astronomical Society of the Pacific</publisher><subject>Astronomical Software, Data Analysis, and Techniques ; Astronomy ; Astrophysics ; Classification ; Contamination ; Physics ; Simulation ; techniques: miscellaneous ; Time series</subject><ispartof>Publ.Astron.Soc.Pac, 2019-09, Vol.131 (1003), p.1-35</ispartof><rights>2019. The Astronomical Society of the Pacific. All rights reserved.</rights><rights>2019. The Astronomical Society of the Pacific</rights><rights>Copyright IOP Publishing Sep 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-9f404baac14e562656941de9c07db60f78617f10ebc9443934e7452f8db49313</citedby><cites>FETCH-LOGICAL-c509t-9f404baac14e562656941de9c07db60f78617f10ebc9443934e7452f8db49313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1538-3873/ab26f1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26874441$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,882,27905,27906,53827,53874,57998,58231</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02108097$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-171941$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kessler, R.</creatorcontrib><creatorcontrib>Narayan, G.</creatorcontrib><creatorcontrib>Avelino, A.</creatorcontrib><creatorcontrib>Bachelet, E.</creatorcontrib><creatorcontrib>Biswas, R.</creatorcontrib><creatorcontrib>Brown, P. J.</creatorcontrib><creatorcontrib>Chernoff, D. F.</creatorcontrib><creatorcontrib>Connolly, A. J.</creatorcontrib><creatorcontrib>Dai, M.</creatorcontrib><creatorcontrib>Daniel, S.</creatorcontrib><creatorcontrib>Stefano, R. Di</creatorcontrib><creatorcontrib>Drout, M. R.</creatorcontrib><creatorcontrib>Galbany, L.</creatorcontrib><creatorcontrib>González-Gaitán, S.</creatorcontrib><creatorcontrib>Graham, M. L.</creatorcontrib><creatorcontrib>Hlo ek, R.</creatorcontrib><creatorcontrib>Ishida, E. E. O.</creatorcontrib><creatorcontrib>Guillochon, J.</creatorcontrib><creatorcontrib>Jha, S. W.</creatorcontrib><creatorcontrib>Jones, D. O.</creatorcontrib><creatorcontrib>Mandel, K. S.</creatorcontrib><creatorcontrib>Muthukrishna, D.</creatorcontrib><creatorcontrib>O'Grady, A.</creatorcontrib><creatorcontrib>Peters, C. M.</creatorcontrib><creatorcontrib>Pierel, J. R.</creatorcontrib><creatorcontrib>Ponder, K. A.</creatorcontrib><creatorcontrib>Prša, A.</creatorcontrib><creatorcontrib>Rodney, S.</creatorcontrib><creatorcontrib>Villar, V. A.</creatorcontrib><creatorcontrib>The LSST Dark Energy Science Collaboration and the Transient and Variable Stars Science Collaboration</creatorcontrib><title>Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC)</title><title>Publ.Astron.Soc.Pac</title><addtitle>Publ. Astron. Soc. Pac</addtitle><description>We describe the simulated data sample for the Photometric Large Synoptic Survey Telescope (LSST) Astronomical Time Series Classification Challenge (PLAsTiCC), a publicly available challenge to classify transient and variable events that will be observed by the LSST, a new facility expected to start in the early 2020s. The challenge was hosted by Kaggle, ran from 2018 September 28 to December 17, and included 1094 teams competing for prizes. Here we provide details of the 18 transient and variable source models, which were not revealed until after the challenge, and release the model libraries at https://doi.org/10.5281/zenodo.2612896. We describe the LSST Operations Simulator used to predict realistic observing conditions, and we describe the publicly available SNANA simulation code used to transform the models into observed fluxes and uncertainties in the LSST passbands (ugrizy). Although PLAsTiCC has finished, the publicly available models and simulation tools are being used within the astronomy community to further improve classification, and to study contamination in photometrically identified samples of SN Ia used to measure properties of dark energy. Our simulation framework will continue serving as a platform to improve the PLAsTiCC models, and to develop new models.</description><subject>Astronomical Software, Data Analysis, and Techniques</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Classification</subject><subject>Contamination</subject><subject>Physics</subject><subject>Simulation</subject><subject>techniques: miscellaneous</subject><subject>Time series</subject><issn>0004-6280</issn><issn>1538-3873</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFq3DAURUVooNMk-24Cgm4aqJMnWbalpXHSpuDSwJhshWxLGQ22NZHslP59bVym6SIrweW8Iz1dhD4SuCbA-Q1JYh7FPItvVE1TQ07Q5hi9QxsAYFFKObxHH0LYAxDCCWxQ98O1ugtYDS3e2n7q1GjdELBxHo87jR92bnS9Hr1tcLndVjgPo3eD622jOlzZXuOt9lYHXHQqBGvmfDHgYqe6Tg9PGn9-KPNQ2aK4OkenRnVBX_w9z1D19a4q7qPy57fvRV5GTQJijIRhwGqlGsJ0ktI0SQUjrRYNZG2dgsl4SjJDQNeNYCwWMdMZS6jhbc1ETOIz9GXVhl_6MNXy4G2v_G_plJW39jGXzj_JMEmSkVk841crPr_4P_Y-L-WSAZ1_GET2srCfVvbg3fOkwyj3bvLDvIyklFMWJ1SImYKVarwLwWtz1BKQS1tyqUYu1ci1rXnkch3Zh9H5I09TnjHGXu1k3eHfnW_q_gC9YZ14</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Kessler, R.</creator><creator>Narayan, G.</creator><creator>Avelino, A.</creator><creator>Bachelet, E.</creator><creator>Biswas, R.</creator><creator>Brown, P. J.</creator><creator>Chernoff, D. F.</creator><creator>Connolly, A. J.</creator><creator>Dai, M.</creator><creator>Daniel, S.</creator><creator>Stefano, R. Di</creator><creator>Drout, M. R.</creator><creator>Galbany, L.</creator><creator>González-Gaitán, S.</creator><creator>Graham, M. L.</creator><creator>Hlo ek, R.</creator><creator>Ishida, E. E. O.</creator><creator>Guillochon, J.</creator><creator>Jha, S. W.</creator><creator>Jones, D. O.</creator><creator>Mandel, K. S.</creator><creator>Muthukrishna, D.</creator><creator>O'Grady, A.</creator><creator>Peters, C. M.</creator><creator>Pierel, J. R.</creator><creator>Ponder, K. A.</creator><creator>Prša, A.</creator><creator>Rodney, S.</creator><creator>Villar, V. A.</creator><general>The Astronomical Society of the Pacific</general><general>IOP Publishing Limited</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope></search><sort><creationdate>20190901</creationdate><title>Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC)</title><author>Kessler, R. ; Narayan, G. ; Avelino, A. ; Bachelet, E. ; Biswas, R. ; Brown, P. J. ; Chernoff, D. F. ; Connolly, A. J. ; Dai, M. ; Daniel, S. ; Stefano, R. Di ; Drout, M. R. ; Galbany, L. ; González-Gaitán, S. ; Graham, M. L. ; Hlo ek, R. ; Ishida, E. E. O. ; Guillochon, J. ; Jha, S. W. ; Jones, D. O. ; Mandel, K. S. ; Muthukrishna, D. ; O'Grady, A. ; Peters, C. M. ; Pierel, J. R. ; Ponder, K. A. ; Prša, A. ; Rodney, S. ; Villar, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-9f404baac14e562656941de9c07db60f78617f10ebc9443934e7452f8db49313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomical Software, Data Analysis, and Techniques</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Classification</topic><topic>Contamination</topic><topic>Physics</topic><topic>Simulation</topic><topic>techniques: miscellaneous</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kessler, R.</creatorcontrib><creatorcontrib>Narayan, G.</creatorcontrib><creatorcontrib>Avelino, A.</creatorcontrib><creatorcontrib>Bachelet, E.</creatorcontrib><creatorcontrib>Biswas, R.</creatorcontrib><creatorcontrib>Brown, P. J.</creatorcontrib><creatorcontrib>Chernoff, D. F.</creatorcontrib><creatorcontrib>Connolly, A. J.</creatorcontrib><creatorcontrib>Dai, M.</creatorcontrib><creatorcontrib>Daniel, S.</creatorcontrib><creatorcontrib>Stefano, R. Di</creatorcontrib><creatorcontrib>Drout, M. R.</creatorcontrib><creatorcontrib>Galbany, L.</creatorcontrib><creatorcontrib>González-Gaitán, S.</creatorcontrib><creatorcontrib>Graham, M. L.</creatorcontrib><creatorcontrib>Hlo ek, R.</creatorcontrib><creatorcontrib>Ishida, E. E. O.</creatorcontrib><creatorcontrib>Guillochon, J.</creatorcontrib><creatorcontrib>Jha, S. W.</creatorcontrib><creatorcontrib>Jones, D. O.</creatorcontrib><creatorcontrib>Mandel, K. S.</creatorcontrib><creatorcontrib>Muthukrishna, D.</creatorcontrib><creatorcontrib>O'Grady, A.</creatorcontrib><creatorcontrib>Peters, C. M.</creatorcontrib><creatorcontrib>Pierel, J. R.</creatorcontrib><creatorcontrib>Ponder, K. A.</creatorcontrib><creatorcontrib>Prša, A.</creatorcontrib><creatorcontrib>Rodney, S.</creatorcontrib><creatorcontrib>Villar, V. A.</creatorcontrib><creatorcontrib>The LSST Dark Energy Science Collaboration and the Transient and Variable Stars Science Collaboration</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Publ.Astron.Soc.Pac</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler, R.</au><au>Narayan, G.</au><au>Avelino, A.</au><au>Bachelet, E.</au><au>Biswas, R.</au><au>Brown, P. J.</au><au>Chernoff, D. F.</au><au>Connolly, A. J.</au><au>Dai, M.</au><au>Daniel, S.</au><au>Stefano, R. Di</au><au>Drout, M. R.</au><au>Galbany, L.</au><au>González-Gaitán, S.</au><au>Graham, M. L.</au><au>Hlo ek, R.</au><au>Ishida, E. E. O.</au><au>Guillochon, J.</au><au>Jha, S. W.</au><au>Jones, D. O.</au><au>Mandel, K. S.</au><au>Muthukrishna, D.</au><au>O'Grady, A.</au><au>Peters, C. M.</au><au>Pierel, J. R.</au><au>Ponder, K. A.</au><au>Prša, A.</au><au>Rodney, S.</au><au>Villar, V. A.</au><aucorp>The LSST Dark Energy Science Collaboration and the Transient and Variable Stars Science Collaboration</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC)</atitle><jtitle>Publ.Astron.Soc.Pac</jtitle><addtitle>Publ. Astron. Soc. Pac</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>131</volume><issue>1003</issue><spage>1</spage><epage>35</epage><pages>1-35</pages><issn>0004-6280</issn><issn>1538-3873</issn><eissn>1538-3873</eissn><abstract>We describe the simulated data sample for the Photometric Large Synoptic Survey Telescope (LSST) Astronomical Time Series Classification Challenge (PLAsTiCC), a publicly available challenge to classify transient and variable events that will be observed by the LSST, a new facility expected to start in the early 2020s. The challenge was hosted by Kaggle, ran from 2018 September 28 to December 17, and included 1094 teams competing for prizes. Here we provide details of the 18 transient and variable source models, which were not revealed until after the challenge, and release the model libraries at https://doi.org/10.5281/zenodo.2612896. We describe the LSST Operations Simulator used to predict realistic observing conditions, and we describe the publicly available SNANA simulation code used to transform the models into observed fluxes and uncertainties in the LSST passbands (ugrizy). Although PLAsTiCC has finished, the publicly available models and simulation tools are being used within the astronomy community to further improve classification, and to study contamination in photometrically identified samples of SN Ia used to measure properties of dark energy. Our simulation framework will continue serving as a platform to improve the PLAsTiCC models, and to develop new models.</abstract><cop>Philadelphia</cop><pub>The Astronomical Society of the Pacific</pub><doi>10.1088/1538-3873/ab26f1</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6280 |
ispartof | Publ.Astron.Soc.Pac, 2019-09, Vol.131 (1003), p.1-35 |
issn | 0004-6280 1538-3873 1538-3873 |
language | eng |
recordid | cdi_proquest_journals_2282435299 |
source | IOP Publishing Journals; Jstor Complete Legacy; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection |
subjects | Astronomical Software, Data Analysis, and Techniques Astronomy Astrophysics Classification Contamination Physics Simulation techniques: miscellaneous Time series |
title | Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Models%20and%20Simulations%20for%20the%20Photometric%20LSST%20Astronomical%20Time%20Series%20Classification%20Challenge%20(PLAsTiCC)&rft.jtitle=Publ.Astron.Soc.Pac&rft.au=Kessler,%20R.&rft.aucorp=The%20LSST%20Dark%20Energy%20Science%20Collaboration%20and%20the%20Transient%20and%20Variable%20Stars%20Science%20Collaboration&rft.date=2019-09-01&rft.volume=131&rft.issue=1003&rft.spage=1&rft.epage=35&rft.pages=1-35&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/10.1088/1538-3873/ab26f1&rft_dat=%3Cjstor_proqu%3E26874441%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2282435299&rft_id=info:pmid/&rft_jstor_id=26874441&rfr_iscdi=true |