Migratory shorebird adheres to Bergmann's Rule by responding to environmental conditions through the annual lifecycle

The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecography (Copenhagen) 2019-09, Vol.42 (9), p.1482-1493
Hauptverfasser: Gibson, Daniel, Hornsby, Angela D., Brown, Mary B., Cohen, Jonathan B., Dinan, Lauren R., Fraser, James D., Friedrich, Meryl J., Gratto‐Trevor, Cheri L., Hunt, Kelsi L., Jeffery, Matthew, Jorgensen, Joel G., Paton, Peter W. C., Robinson, Samantha G., Rock, Jen, Stantial, Michelle L., Weithman, Chelsea E., Catlin, Daniel H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1493
container_issue 9
container_start_page 1482
container_title Ecography (Copenhagen)
container_volume 42
creator Gibson, Daniel
Hornsby, Angela D.
Brown, Mary B.
Cohen, Jonathan B.
Dinan, Lauren R.
Fraser, James D.
Friedrich, Meryl J.
Gratto‐Trevor, Cheri L.
Hunt, Kelsi L.
Jeffery, Matthew
Jorgensen, Joel G.
Paton, Peter W. C.
Robinson, Samantha G.
Rock, Jen
Stantial, Michelle L.
Weithman, Chelsea E.
Catlin, Daniel H.
description The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extremes and reorient themselves along the environmental gradient. In addition, some aspects of body size are largely fixed while others are environmentally flexible and may vary seasonally. Here, we used a long‐term dataset that tracked multiple populations of the migratory piping plover Charadrius melodus across their breeding and non‐breeding ranges to investigate ecogeographic patterns of phenotypically flexible (body mass) and fixed (wing length) size traits in relation to latitude (Bergmann's Rule), environmental temperature (heat conservation hypothesis), and migratory distance. We found that body mass was correlated with both latitude and temperature across the breeding and non‐breeding ranges, which is consistent with predictions of Bergmann's Rule and heat conservation. However, wing length was correlated with latitude and temperature only on the breeding range. This discrepancy resulted from low migratory connectivity across seasons and the tendency for individuals with longer wings to migrate farther than those with shorter wings. Ultimately, these results suggest that wing length may be driven more by conditions experienced during the breeding season or tradeoffs related to migration, whereas body mass is modified by environmental conditions experienced throughout the annual lifecycle.
doi_str_mv 10.1111/ecog.04325
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2282401337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2282401337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3375-686d26ee17de6b70a49524f0ea922ded770ea6f99520a071edde3f731a77f57e3</originalsourceid><addsrcrecordid>eNp9kNFLwzAQxoMoOKcv_gUBHwShM0nbpH3UMacwGYg-h6y5thldMpNW6X9v5nz2Xu6473ffwYfQNSUzGuseKtfMSJay_ARNKCckIXkhTtGElIQnIi_JOboIYUsIZSUvJmh4NY1XvfMjDq3zsDFeY6Vb8BBw7_Aj-GanrL0N-G3oAG9GHJW9s9rY5gCA_TLe2R3YXnW4Ogi9cTYet94NTRs74GgwRLUzNVRj1cElOqtVF-Dqr0_Rx9Piff6crNbLl_nDKqnSVOQJL7hmHIAKDXwjiMrKnGU1AVUypkELEUdel3FLFBEUtIa0FilVQtS5gHSKbo6-e-8-Bwi93LrB2_hSMlawjND4J1J3R6ryLgQPtdx7s1N-lJTIQ6zyEKv8jTXC9Ah_mw7Gf0i5mK-XlGVpnv4AGGl8hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282401337</pqid></control><display><type>article</type><title>Migratory shorebird adheres to Bergmann's Rule by responding to environmental conditions through the annual lifecycle</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gibson, Daniel ; Hornsby, Angela D. ; Brown, Mary B. ; Cohen, Jonathan B. ; Dinan, Lauren R. ; Fraser, James D. ; Friedrich, Meryl J. ; Gratto‐Trevor, Cheri L. ; Hunt, Kelsi L. ; Jeffery, Matthew ; Jorgensen, Joel G. ; Paton, Peter W. C. ; Robinson, Samantha G. ; Rock, Jen ; Stantial, Michelle L. ; Weithman, Chelsea E. ; Catlin, Daniel H.</creator><creatorcontrib>Gibson, Daniel ; Hornsby, Angela D. ; Brown, Mary B. ; Cohen, Jonathan B. ; Dinan, Lauren R. ; Fraser, James D. ; Friedrich, Meryl J. ; Gratto‐Trevor, Cheri L. ; Hunt, Kelsi L. ; Jeffery, Matthew ; Jorgensen, Joel G. ; Paton, Peter W. C. ; Robinson, Samantha G. ; Rock, Jen ; Stantial, Michelle L. ; Weithman, Chelsea E. ; Catlin, Daniel H.</creatorcontrib><description>The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extremes and reorient themselves along the environmental gradient. In addition, some aspects of body size are largely fixed while others are environmentally flexible and may vary seasonally. Here, we used a long‐term dataset that tracked multiple populations of the migratory piping plover Charadrius melodus across their breeding and non‐breeding ranges to investigate ecogeographic patterns of phenotypically flexible (body mass) and fixed (wing length) size traits in relation to latitude (Bergmann's Rule), environmental temperature (heat conservation hypothesis), and migratory distance. We found that body mass was correlated with both latitude and temperature across the breeding and non‐breeding ranges, which is consistent with predictions of Bergmann's Rule and heat conservation. However, wing length was correlated with latitude and temperature only on the breeding range. This discrepancy resulted from low migratory connectivity across seasons and the tendency for individuals with longer wings to migrate farther than those with shorter wings. Ultimately, these results suggest that wing length may be driven more by conditions experienced during the breeding season or tradeoffs related to migration, whereas body mass is modified by environmental conditions experienced throughout the annual lifecycle.</description><identifier>ISSN: 0906-7590</identifier><identifier>EISSN: 1600-0587</identifier><identifier>DOI: 10.1111/ecog.04325</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Aquatic birds ; Bergmann's Rule ; Birds ; Body mass ; Body size ; Body temperature ; Breeding seasons ; Conservation ; Environmental conditions ; Environmental gradient ; heat conservation ; Latitude ; migration distance ; Migratory birds ; migratory connectivity ; Migratory species ; phenotypic flexibility ; Piping ; piping plover ; Temperature effects</subject><ispartof>Ecography (Copenhagen), 2019-09, Vol.42 (9), p.1482-1493</ispartof><rights>2019 The Authors</rights><rights>Ecography © 2019 Nordic Society Oikos</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3375-686d26ee17de6b70a49524f0ea922ded770ea6f99520a071edde3f731a77f57e3</citedby><cites>FETCH-LOGICAL-c3375-686d26ee17de6b70a49524f0ea922ded770ea6f99520a071edde3f731a77f57e3</cites><orcidid>0000-0003-1580-1479 ; 0000-0003-0927-2101 ; 0000-0003-4637-0384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fecog.04325$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fecog.04325$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gibson, Daniel</creatorcontrib><creatorcontrib>Hornsby, Angela D.</creatorcontrib><creatorcontrib>Brown, Mary B.</creatorcontrib><creatorcontrib>Cohen, Jonathan B.</creatorcontrib><creatorcontrib>Dinan, Lauren R.</creatorcontrib><creatorcontrib>Fraser, James D.</creatorcontrib><creatorcontrib>Friedrich, Meryl J.</creatorcontrib><creatorcontrib>Gratto‐Trevor, Cheri L.</creatorcontrib><creatorcontrib>Hunt, Kelsi L.</creatorcontrib><creatorcontrib>Jeffery, Matthew</creatorcontrib><creatorcontrib>Jorgensen, Joel G.</creatorcontrib><creatorcontrib>Paton, Peter W. C.</creatorcontrib><creatorcontrib>Robinson, Samantha G.</creatorcontrib><creatorcontrib>Rock, Jen</creatorcontrib><creatorcontrib>Stantial, Michelle L.</creatorcontrib><creatorcontrib>Weithman, Chelsea E.</creatorcontrib><creatorcontrib>Catlin, Daniel H.</creatorcontrib><title>Migratory shorebird adheres to Bergmann's Rule by responding to environmental conditions through the annual lifecycle</title><title>Ecography (Copenhagen)</title><description>The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extremes and reorient themselves along the environmental gradient. In addition, some aspects of body size are largely fixed while others are environmentally flexible and may vary seasonally. Here, we used a long‐term dataset that tracked multiple populations of the migratory piping plover Charadrius melodus across their breeding and non‐breeding ranges to investigate ecogeographic patterns of phenotypically flexible (body mass) and fixed (wing length) size traits in relation to latitude (Bergmann's Rule), environmental temperature (heat conservation hypothesis), and migratory distance. We found that body mass was correlated with both latitude and temperature across the breeding and non‐breeding ranges, which is consistent with predictions of Bergmann's Rule and heat conservation. However, wing length was correlated with latitude and temperature only on the breeding range. This discrepancy resulted from low migratory connectivity across seasons and the tendency for individuals with longer wings to migrate farther than those with shorter wings. Ultimately, these results suggest that wing length may be driven more by conditions experienced during the breeding season or tradeoffs related to migration, whereas body mass is modified by environmental conditions experienced throughout the annual lifecycle.</description><subject>Aquatic birds</subject><subject>Bergmann's Rule</subject><subject>Birds</subject><subject>Body mass</subject><subject>Body size</subject><subject>Body temperature</subject><subject>Breeding seasons</subject><subject>Conservation</subject><subject>Environmental conditions</subject><subject>Environmental gradient</subject><subject>heat conservation</subject><subject>Latitude</subject><subject>migration distance</subject><subject>Migratory birds</subject><subject>migratory connectivity</subject><subject>Migratory species</subject><subject>phenotypic flexibility</subject><subject>Piping</subject><subject>piping plover</subject><subject>Temperature effects</subject><issn>0906-7590</issn><issn>1600-0587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kNFLwzAQxoMoOKcv_gUBHwShM0nbpH3UMacwGYg-h6y5thldMpNW6X9v5nz2Xu6473ffwYfQNSUzGuseKtfMSJay_ARNKCckIXkhTtGElIQnIi_JOboIYUsIZSUvJmh4NY1XvfMjDq3zsDFeY6Vb8BBw7_Aj-GanrL0N-G3oAG9GHJW9s9rY5gCA_TLe2R3YXnW4Ogi9cTYet94NTRs74GgwRLUzNVRj1cElOqtVF-Dqr0_Rx9Piff6crNbLl_nDKqnSVOQJL7hmHIAKDXwjiMrKnGU1AVUypkELEUdel3FLFBEUtIa0FilVQtS5gHSKbo6-e-8-Bwi93LrB2_hSMlawjND4J1J3R6ryLgQPtdx7s1N-lJTIQ6zyEKv8jTXC9Ah_mw7Gf0i5mK-XlGVpnv4AGGl8hg</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Gibson, Daniel</creator><creator>Hornsby, Angela D.</creator><creator>Brown, Mary B.</creator><creator>Cohen, Jonathan B.</creator><creator>Dinan, Lauren R.</creator><creator>Fraser, James D.</creator><creator>Friedrich, Meryl J.</creator><creator>Gratto‐Trevor, Cheri L.</creator><creator>Hunt, Kelsi L.</creator><creator>Jeffery, Matthew</creator><creator>Jorgensen, Joel G.</creator><creator>Paton, Peter W. C.</creator><creator>Robinson, Samantha G.</creator><creator>Rock, Jen</creator><creator>Stantial, Michelle L.</creator><creator>Weithman, Chelsea E.</creator><creator>Catlin, Daniel H.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope><orcidid>https://orcid.org/0000-0003-1580-1479</orcidid><orcidid>https://orcid.org/0000-0003-0927-2101</orcidid><orcidid>https://orcid.org/0000-0003-4637-0384</orcidid></search><sort><creationdate>201909</creationdate><title>Migratory shorebird adheres to Bergmann's Rule by responding to environmental conditions through the annual lifecycle</title><author>Gibson, Daniel ; Hornsby, Angela D. ; Brown, Mary B. ; Cohen, Jonathan B. ; Dinan, Lauren R. ; Fraser, James D. ; Friedrich, Meryl J. ; Gratto‐Trevor, Cheri L. ; Hunt, Kelsi L. ; Jeffery, Matthew ; Jorgensen, Joel G. ; Paton, Peter W. C. ; Robinson, Samantha G. ; Rock, Jen ; Stantial, Michelle L. ; Weithman, Chelsea E. ; Catlin, Daniel H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3375-686d26ee17de6b70a49524f0ea922ded770ea6f99520a071edde3f731a77f57e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aquatic birds</topic><topic>Bergmann's Rule</topic><topic>Birds</topic><topic>Body mass</topic><topic>Body size</topic><topic>Body temperature</topic><topic>Breeding seasons</topic><topic>Conservation</topic><topic>Environmental conditions</topic><topic>Environmental gradient</topic><topic>heat conservation</topic><topic>Latitude</topic><topic>migration distance</topic><topic>Migratory birds</topic><topic>migratory connectivity</topic><topic>Migratory species</topic><topic>phenotypic flexibility</topic><topic>Piping</topic><topic>piping plover</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gibson, Daniel</creatorcontrib><creatorcontrib>Hornsby, Angela D.</creatorcontrib><creatorcontrib>Brown, Mary B.</creatorcontrib><creatorcontrib>Cohen, Jonathan B.</creatorcontrib><creatorcontrib>Dinan, Lauren R.</creatorcontrib><creatorcontrib>Fraser, James D.</creatorcontrib><creatorcontrib>Friedrich, Meryl J.</creatorcontrib><creatorcontrib>Gratto‐Trevor, Cheri L.</creatorcontrib><creatorcontrib>Hunt, Kelsi L.</creatorcontrib><creatorcontrib>Jeffery, Matthew</creatorcontrib><creatorcontrib>Jorgensen, Joel G.</creatorcontrib><creatorcontrib>Paton, Peter W. C.</creatorcontrib><creatorcontrib>Robinson, Samantha G.</creatorcontrib><creatorcontrib>Rock, Jen</creatorcontrib><creatorcontrib>Stantial, Michelle L.</creatorcontrib><creatorcontrib>Weithman, Chelsea E.</creatorcontrib><creatorcontrib>Catlin, Daniel H.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Ecography (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gibson, Daniel</au><au>Hornsby, Angela D.</au><au>Brown, Mary B.</au><au>Cohen, Jonathan B.</au><au>Dinan, Lauren R.</au><au>Fraser, James D.</au><au>Friedrich, Meryl J.</au><au>Gratto‐Trevor, Cheri L.</au><au>Hunt, Kelsi L.</au><au>Jeffery, Matthew</au><au>Jorgensen, Joel G.</au><au>Paton, Peter W. C.</au><au>Robinson, Samantha G.</au><au>Rock, Jen</au><au>Stantial, Michelle L.</au><au>Weithman, Chelsea E.</au><au>Catlin, Daniel H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Migratory shorebird adheres to Bergmann's Rule by responding to environmental conditions through the annual lifecycle</atitle><jtitle>Ecography (Copenhagen)</jtitle><date>2019-09</date><risdate>2019</risdate><volume>42</volume><issue>9</issue><spage>1482</spage><epage>1493</epage><pages>1482-1493</pages><issn>0906-7590</issn><eissn>1600-0587</eissn><abstract>The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extremes and reorient themselves along the environmental gradient. In addition, some aspects of body size are largely fixed while others are environmentally flexible and may vary seasonally. Here, we used a long‐term dataset that tracked multiple populations of the migratory piping plover Charadrius melodus across their breeding and non‐breeding ranges to investigate ecogeographic patterns of phenotypically flexible (body mass) and fixed (wing length) size traits in relation to latitude (Bergmann's Rule), environmental temperature (heat conservation hypothesis), and migratory distance. We found that body mass was correlated with both latitude and temperature across the breeding and non‐breeding ranges, which is consistent with predictions of Bergmann's Rule and heat conservation. However, wing length was correlated with latitude and temperature only on the breeding range. This discrepancy resulted from low migratory connectivity across seasons and the tendency for individuals with longer wings to migrate farther than those with shorter wings. Ultimately, these results suggest that wing length may be driven more by conditions experienced during the breeding season or tradeoffs related to migration, whereas body mass is modified by environmental conditions experienced throughout the annual lifecycle.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ecog.04325</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1580-1479</orcidid><orcidid>https://orcid.org/0000-0003-0927-2101</orcidid><orcidid>https://orcid.org/0000-0003-4637-0384</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0906-7590
ispartof Ecography (Copenhagen), 2019-09, Vol.42 (9), p.1482-1493
issn 0906-7590
1600-0587
language eng
recordid cdi_proquest_journals_2282401337
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aquatic birds
Bergmann's Rule
Birds
Body mass
Body size
Body temperature
Breeding seasons
Conservation
Environmental conditions
Environmental gradient
heat conservation
Latitude
migration distance
Migratory birds
migratory connectivity
Migratory species
phenotypic flexibility
Piping
piping plover
Temperature effects
title Migratory shorebird adheres to Bergmann's Rule by responding to environmental conditions through the annual lifecycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Migratory%20shorebird%20adheres%20to%20Bergmann's%20Rule%20by%20responding%20to%20environmental%20conditions%20through%20the%20annual%20lifecycle&rft.jtitle=Ecography%20(Copenhagen)&rft.au=Gibson,%20Daniel&rft.date=2019-09&rft.volume=42&rft.issue=9&rft.spage=1482&rft.epage=1493&rft.pages=1482-1493&rft.issn=0906-7590&rft.eissn=1600-0587&rft_id=info:doi/10.1111/ecog.04325&rft_dat=%3Cproquest_cross%3E2282401337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2282401337&rft_id=info:pmid/&rfr_iscdi=true