Dessins d'Enfants for Single-Cycle Belyi Maps
Riemann's Existence Theorem gives the following bijections: (1) Isomorphism classes of Belyi maps of degree \(d\). (2) Equivalence classes of generating systems of degree \(d\). (3) Isomorphism classes of dessins d'enfants with \(d\) edges. In previous work, the first author and collaborat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Manes, Michelle Melamed, Gabrielle Tobin, Bella |
description | Riemann's Existence Theorem gives the following bijections: (1) Isomorphism classes of Belyi maps of degree \(d\). (2) Equivalence classes of generating systems of degree \(d\). (3) Isomorphism classes of dessins d'enfants with \(d\) edges. In previous work, the first author and collaborators exploited the correspondence between Belyi maps and their generating systems to provide explicit equations for two infinite families of dynamical Belyi maps. We complete this picture by describing the dessins d'enfants for these two families. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2282313435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2282313435</sourcerecordid><originalsourceid>FETCH-proquest_journals_22823134353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdUktLs7MK1ZIUXfNS0vMKylWSMsvUgjOzEvPSdV1rkzOSVVwSs2pzFTwTSwo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMjCyNjQ2MTY1Nj4lQBAF6bMRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282313435</pqid></control><display><type>article</type><title>Dessins d'Enfants for Single-Cycle Belyi Maps</title><source>Free E- Journals</source><creator>Manes, Michelle ; Melamed, Gabrielle ; Tobin, Bella</creator><creatorcontrib>Manes, Michelle ; Melamed, Gabrielle ; Tobin, Bella</creatorcontrib><description>Riemann's Existence Theorem gives the following bijections: (1) Isomorphism classes of Belyi maps of degree \(d\). (2) Equivalence classes of generating systems of degree \(d\). (3) Isomorphism classes of dessins d'enfants with \(d\) edges. In previous work, the first author and collaborators exploited the correspondence between Belyi maps and their generating systems to provide explicit equations for two infinite families of dynamical Belyi maps. We complete this picture by describing the dessins d'enfants for these two families.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Existence theorems ; Isomorphism</subject><ispartof>arXiv.org, 2019-08</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Manes, Michelle</creatorcontrib><creatorcontrib>Melamed, Gabrielle</creatorcontrib><creatorcontrib>Tobin, Bella</creatorcontrib><title>Dessins d'Enfants for Single-Cycle Belyi Maps</title><title>arXiv.org</title><description>Riemann's Existence Theorem gives the following bijections: (1) Isomorphism classes of Belyi maps of degree \(d\). (2) Equivalence classes of generating systems of degree \(d\). (3) Isomorphism classes of dessins d'enfants with \(d\) edges. In previous work, the first author and collaborators exploited the correspondence between Belyi maps and their generating systems to provide explicit equations for two infinite families of dynamical Belyi maps. We complete this picture by describing the dessins d'enfants for these two families.</description><subject>Existence theorems</subject><subject>Isomorphism</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdUktLs7MK1ZIUXfNS0vMKylWSMsvUgjOzEvPSdV1rkzOSVVwSs2pzFTwTSwo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMjCyNjQ2MTY1Nj4lQBAF6bMRM</recordid><startdate>20190827</startdate><enddate>20190827</enddate><creator>Manes, Michelle</creator><creator>Melamed, Gabrielle</creator><creator>Tobin, Bella</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190827</creationdate><title>Dessins d'Enfants for Single-Cycle Belyi Maps</title><author>Manes, Michelle ; Melamed, Gabrielle ; Tobin, Bella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22823134353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Existence theorems</topic><topic>Isomorphism</topic><toplevel>online_resources</toplevel><creatorcontrib>Manes, Michelle</creatorcontrib><creatorcontrib>Melamed, Gabrielle</creatorcontrib><creatorcontrib>Tobin, Bella</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manes, Michelle</au><au>Melamed, Gabrielle</au><au>Tobin, Bella</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Dessins d'Enfants for Single-Cycle Belyi Maps</atitle><jtitle>arXiv.org</jtitle><date>2019-08-27</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Riemann's Existence Theorem gives the following bijections: (1) Isomorphism classes of Belyi maps of degree \(d\). (2) Equivalence classes of generating systems of degree \(d\). (3) Isomorphism classes of dessins d'enfants with \(d\) edges. In previous work, the first author and collaborators exploited the correspondence between Belyi maps and their generating systems to provide explicit equations for two infinite families of dynamical Belyi maps. We complete this picture by describing the dessins d'enfants for these two families.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2282313435 |
source | Free E- Journals |
subjects | Existence theorems Isomorphism |
title | Dessins d'Enfants for Single-Cycle Belyi Maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Dessins%20d'Enfants%20for%20Single-Cycle%20Belyi%20Maps&rft.jtitle=arXiv.org&rft.au=Manes,%20Michelle&rft.date=2019-08-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2282313435%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2282313435&rft_id=info:pmid/&rfr_iscdi=true |