Ergodic Properties of Tame Dynamical Systems

The problem of the *-weak decomposability into ergodic components of a topological ℕ 0 -dynamical system (Ω, φ), where φ is a continuous endomorphism of a compact metric space Ω, is considered in terms of the associated enveloping semigroups. It is shown that, in the tame case (where the Ellis semig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2019-07, Vol.106 (1-2), p.286-295
1. Verfasser: Romanov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue 1-2
container_start_page 286
container_title Mathematical Notes
container_volume 106
creator Romanov, A. V.
description The problem of the *-weak decomposability into ergodic components of a topological ℕ 0 -dynamical system (Ω, φ), where φ is a continuous endomorphism of a compact metric space Ω, is considered in terms of the associated enveloping semigroups. It is shown that, in the tame case (where the Ellis semigroup E (Ω, φ) consists of endomorphisms of Ω of the first Baire class), such a decomposition exists for an appropriately chosen generalized sequential averaging method. A relationship between the statistical properties of (Ω, φ) and the mutual structure of minimal sets and ergodic measures is discussed.
doi_str_mv 10.1134/S0001434619070319
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2282121183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2282121183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-23da89dbb92777bf521b069fcfefed1ea75ae67e0ebdc067aae0f2f2e44a3cf93</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRMFZ_gLuAW6NzZ5J5LKW2KhQUWtdhMrlTUpqHM-ki_96ECC7E1eVwzncuHEJugT4A8PRxSymFlKcCNJWUgz4jEWSSJ0pJcU6iyU4m_5JchXAYFQigEblf-X1bVjb-8G2Hvq8wxK2Ld6bG-HloTF1Zc4y3Q-ixDtfkwpljwJufuyCf69Vu-Zps3l_elk-bxDKh-oTx0ihdFoVmUsrCZQwKKrSzDh2WgEZmBoVEikVpqZDGIHXMMUxTw63TfEHu5t7Ot18nDH1-aE--GV_mjCkGDEDxMQVzyvo2BI8u73xVGz_kQPNplPzPKCPDZiaM2WaP_rf5f-gbdmli4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282121183</pqid></control><display><type>article</type><title>Ergodic Properties of Tame Dynamical Systems</title><source>SpringerLink Journals</source><creator>Romanov, A. V.</creator><creatorcontrib>Romanov, A. V.</creatorcontrib><description>The problem of the *-weak decomposability into ergodic components of a topological ℕ 0 -dynamical system (Ω, φ), where φ is a continuous endomorphism of a compact metric space Ω, is considered in terms of the associated enveloping semigroups. It is shown that, in the tame case (where the Ellis semigroup E (Ω, φ) consists of endomorphisms of Ω of the first Baire class), such a decomposition exists for an appropriately chosen generalized sequential averaging method. A relationship between the statistical properties of (Ω, φ) and the mutual structure of minimal sets and ergodic measures is discussed.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434619070319</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Decomposition ; Dynamical systems ; Ergodic processes ; Mathematics ; Mathematics and Statistics ; Metric space</subject><ispartof>Mathematical Notes, 2019-07, Vol.106 (1-2), p.286-295</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-23da89dbb92777bf521b069fcfefed1ea75ae67e0ebdc067aae0f2f2e44a3cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434619070319$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434619070319$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Romanov, A. V.</creatorcontrib><title>Ergodic Properties of Tame Dynamical Systems</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>The problem of the *-weak decomposability into ergodic components of a topological ℕ 0 -dynamical system (Ω, φ), where φ is a continuous endomorphism of a compact metric space Ω, is considered in terms of the associated enveloping semigroups. It is shown that, in the tame case (where the Ellis semigroup E (Ω, φ) consists of endomorphisms of Ω of the first Baire class), such a decomposition exists for an appropriately chosen generalized sequential averaging method. A relationship between the statistical properties of (Ω, φ) and the mutual structure of minimal sets and ergodic measures is discussed.</description><subject>Decomposition</subject><subject>Dynamical systems</subject><subject>Ergodic processes</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRMFZ_gLuAW6NzZ5J5LKW2KhQUWtdhMrlTUpqHM-ki_96ECC7E1eVwzncuHEJugT4A8PRxSymFlKcCNJWUgz4jEWSSJ0pJcU6iyU4m_5JchXAYFQigEblf-X1bVjb-8G2Hvq8wxK2Ld6bG-HloTF1Zc4y3Q-ixDtfkwpljwJufuyCf69Vu-Zps3l_elk-bxDKh-oTx0ihdFoVmUsrCZQwKKrSzDh2WgEZmBoVEikVpqZDGIHXMMUxTw63TfEHu5t7Ot18nDH1-aE--GV_mjCkGDEDxMQVzyvo2BI8u73xVGz_kQPNplPzPKCPDZiaM2WaP_rf5f-gbdmli4g</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Romanov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Ergodic Properties of Tame Dynamical Systems</title><author>Romanov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-23da89dbb92777bf521b069fcfefed1ea75ae67e0ebdc067aae0f2f2e44a3cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Decomposition</topic><topic>Dynamical systems</topic><topic>Ergodic processes</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romanov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ergodic Properties of Tame Dynamical Systems</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>106</volume><issue>1-2</issue><spage>286</spage><epage>295</epage><pages>286-295</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>The problem of the *-weak decomposability into ergodic components of a topological ℕ 0 -dynamical system (Ω, φ), where φ is a continuous endomorphism of a compact metric space Ω, is considered in terms of the associated enveloping semigroups. It is shown that, in the tame case (where the Ellis semigroup E (Ω, φ) consists of endomorphisms of Ω of the first Baire class), such a decomposition exists for an appropriately chosen generalized sequential averaging method. A relationship between the statistical properties of (Ω, φ) and the mutual structure of minimal sets and ergodic measures is discussed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434619070319</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2019-07, Vol.106 (1-2), p.286-295
issn 0001-4346
1067-9073
1573-8876
language eng
recordid cdi_proquest_journals_2282121183
source SpringerLink Journals
subjects Decomposition
Dynamical systems
Ergodic processes
Mathematics
Mathematics and Statistics
Metric space
title Ergodic Properties of Tame Dynamical Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A20%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ergodic%20Properties%20of%20Tame%20Dynamical%20Systems&rft.jtitle=Mathematical%20Notes&rft.au=Romanov,%20A.%20V.&rft.date=2019-07-01&rft.volume=106&rft.issue=1-2&rft.spage=286&rft.epage=295&rft.pages=286-295&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434619070319&rft_dat=%3Cproquest_cross%3E2282121183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2282121183&rft_id=info:pmid/&rfr_iscdi=true