Ergodic Properties of Tame Dynamical Systems

The problem of the *-weak decomposability into ergodic components of a topological ℕ 0 -dynamical system (Ω, φ), where φ is a continuous endomorphism of a compact metric space Ω, is considered in terms of the associated enveloping semigroups. It is shown that, in the tame case (where the Ellis semig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2019-07, Vol.106 (1-2), p.286-295
1. Verfasser: Romanov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of the *-weak decomposability into ergodic components of a topological ℕ 0 -dynamical system (Ω, φ), where φ is a continuous endomorphism of a compact metric space Ω, is considered in terms of the associated enveloping semigroups. It is shown that, in the tame case (where the Ellis semigroup E (Ω, φ) consists of endomorphisms of Ω of the first Baire class), such a decomposition exists for an appropriately chosen generalized sequential averaging method. A relationship between the statistical properties of (Ω, φ) and the mutual structure of minimal sets and ergodic measures is discussed.
ISSN:0001-4346
1067-9073
1573-8876
DOI:10.1134/S0001434619070319