Spin Seebeck Effect in Neodymium Iron Garnet Multilayers
Nanoscale sensing applications require significant usage of power which can be achieved through efficient management of omnipresent heat. The spin Seebeck effect (SSE) is rather fresh energy harvesting phenomenon that enables the conversion of temperature gradient across magnetic materials into spin...
Gespeichert in:
Veröffentlicht in: | Sensors and materials 2019-08, Vol.31 (8), p.2541 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 2541 |
container_title | Sensors and materials |
container_volume | 31 |
creator | Tyagi, Shashank Maeda, Taito Kimura, Keisuke Gupta, Surbhi Kishimoto, Kengo Koyanagi, Tsuyoshi Asada, Hironori Fukuma, Yasuhiro |
description | Nanoscale sensing applications require significant usage of power which can be achieved through efficient management of omnipresent heat. The spin Seebeck effect (SSE) is rather fresh energy harvesting phenomenon that enables the conversion of temperature gradient across magnetic materials into spin current. This spin current can further be converted into charge current by adjoining heavy metals to the magnet. In this study, we fabricated the thermoelectric multilayer films of bismuth-substituted neodymium iron garnet (Nd2Bi1Fe5O12) (NIG) as well as gallium and bismuth co-substituted neodymium iron garnet (Nd2Bi1Fe4Ga1O12) (NIGG) on (111)-oriented gallium gadolinium garnet substrates by metal organic decomposition method. The thickness of the NIG and NIGG multilayers are varied to control the magnetic properties. The observed spin Seebeck signal is found to be directly dependent on garnet/heavy metal interface and tended to decrease in intensity with increasing amount of NIGG in the garnet multilayers. Our results emphasize the importance of magnet/heavy metal interface properties for designing of SSE based sensors. |
doi_str_mv | 10.18494/SAM.2019.2335 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2282017421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2282017421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-573404f6c898dc4078d945222f1eb7aa374cd44dafd8fe67a46fb9dfe81d23c83</originalsourceid><addsrcrecordid>eNotkD1PwzAYhD2ARFW6MkdiTvDHm9geq6qUSi0Mhdly7NdSSpoUOxn670kp00mn053uIeSJ0YIp0PByWO4LTpkuuBDlHZlRzSAHLcoHskjpSCllqqQVr2ZEHc5Nlx0Qa3Tf2ToEdEM2Oe_Y-8upGU_ZNvZdtrGxwyHbj-3QtPaCMT2S-2DbhIt_nZOv1_Xn6i3ffWy2q-Uud0LyIS-lAAqhckor74BK5TWUnPPAsJbWCgnOA3gbvApYSQtVqLUPqJjnwikxJ8-33nPsf0ZMgzn2Y-ymScO5ml5K4GxKFbeUi31KEYM5x-Zk48Uwav6gmAmKuUIxVyjiF0f-VSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282017421</pqid></control><display><type>article</type><title>Spin Seebeck Effect in Neodymium Iron Garnet Multilayers</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Tyagi, Shashank ; Maeda, Taito ; Kimura, Keisuke ; Gupta, Surbhi ; Kishimoto, Kengo ; Koyanagi, Tsuyoshi ; Asada, Hironori ; Fukuma, Yasuhiro</creator><creatorcontrib>Tyagi, Shashank ; Maeda, Taito ; Kimura, Keisuke ; Gupta, Surbhi ; Kishimoto, Kengo ; Koyanagi, Tsuyoshi ; Asada, Hironori ; Fukuma, Yasuhiro</creatorcontrib><description>Nanoscale sensing applications require significant usage of power which can be achieved through efficient management of omnipresent heat. The spin Seebeck effect (SSE) is rather fresh energy harvesting phenomenon that enables the conversion of temperature gradient across magnetic materials into spin current. This spin current can further be converted into charge current by adjoining heavy metals to the magnet. In this study, we fabricated the thermoelectric multilayer films of bismuth-substituted neodymium iron garnet (Nd2Bi1Fe5O12) (NIG) as well as gallium and bismuth co-substituted neodymium iron garnet (Nd2Bi1Fe4Ga1O12) (NIGG) on (111)-oriented gallium gadolinium garnet substrates by metal organic decomposition method. The thickness of the NIG and NIGG multilayers are varied to control the magnetic properties. The observed spin Seebeck signal is found to be directly dependent on garnet/heavy metal interface and tended to decrease in intensity with increasing amount of NIGG in the garnet multilayers. Our results emphasize the importance of magnet/heavy metal interface properties for designing of SSE based sensors.</description><identifier>ISSN: 0914-4935</identifier><identifier>DOI: 10.18494/SAM.2019.2335</identifier><language>eng</language><publisher>Tokyo: MYU Scientific Publishing Division</publisher><subject>Bismuth ; Energy harvesting ; Gadolinium ; Gallium ; Heavy metals ; Interfacial properties ; Iron ; Magnetic materials ; Magnetic properties ; Multilayers ; Neodymium ; Seebeck effect ; Spintronics ; Substitutes ; Substrates ; Temperature gradients</subject><ispartof>Sensors and materials, 2019-08, Vol.31 (8), p.2541</ispartof><rights>Copyright MYU Scientific Publishing Division 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Tyagi, Shashank</creatorcontrib><creatorcontrib>Maeda, Taito</creatorcontrib><creatorcontrib>Kimura, Keisuke</creatorcontrib><creatorcontrib>Gupta, Surbhi</creatorcontrib><creatorcontrib>Kishimoto, Kengo</creatorcontrib><creatorcontrib>Koyanagi, Tsuyoshi</creatorcontrib><creatorcontrib>Asada, Hironori</creatorcontrib><creatorcontrib>Fukuma, Yasuhiro</creatorcontrib><title>Spin Seebeck Effect in Neodymium Iron Garnet Multilayers</title><title>Sensors and materials</title><description>Nanoscale sensing applications require significant usage of power which can be achieved through efficient management of omnipresent heat. The spin Seebeck effect (SSE) is rather fresh energy harvesting phenomenon that enables the conversion of temperature gradient across magnetic materials into spin current. This spin current can further be converted into charge current by adjoining heavy metals to the magnet. In this study, we fabricated the thermoelectric multilayer films of bismuth-substituted neodymium iron garnet (Nd2Bi1Fe5O12) (NIG) as well as gallium and bismuth co-substituted neodymium iron garnet (Nd2Bi1Fe4Ga1O12) (NIGG) on (111)-oriented gallium gadolinium garnet substrates by metal organic decomposition method. The thickness of the NIG and NIGG multilayers are varied to control the magnetic properties. The observed spin Seebeck signal is found to be directly dependent on garnet/heavy metal interface and tended to decrease in intensity with increasing amount of NIGG in the garnet multilayers. Our results emphasize the importance of magnet/heavy metal interface properties for designing of SSE based sensors.</description><subject>Bismuth</subject><subject>Energy harvesting</subject><subject>Gadolinium</subject><subject>Gallium</subject><subject>Heavy metals</subject><subject>Interfacial properties</subject><subject>Iron</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>Multilayers</subject><subject>Neodymium</subject><subject>Seebeck effect</subject><subject>Spintronics</subject><subject>Substitutes</subject><subject>Substrates</subject><subject>Temperature gradients</subject><issn>0914-4935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAYhD2ARFW6MkdiTvDHm9geq6qUSi0Mhdly7NdSSpoUOxn670kp00mn053uIeSJ0YIp0PByWO4LTpkuuBDlHZlRzSAHLcoHskjpSCllqqQVr2ZEHc5Nlx0Qa3Tf2ToEdEM2Oe_Y-8upGU_ZNvZdtrGxwyHbj-3QtPaCMT2S-2DbhIt_nZOv1_Xn6i3ffWy2q-Uud0LyIS-lAAqhckor74BK5TWUnPPAsJbWCgnOA3gbvApYSQtVqLUPqJjnwikxJ8-33nPsf0ZMgzn2Y-ymScO5ml5K4GxKFbeUi31KEYM5x-Zk48Uwav6gmAmKuUIxVyjiF0f-VSs</recordid><startdate>20190819</startdate><enddate>20190819</enddate><creator>Tyagi, Shashank</creator><creator>Maeda, Taito</creator><creator>Kimura, Keisuke</creator><creator>Gupta, Surbhi</creator><creator>Kishimoto, Kengo</creator><creator>Koyanagi, Tsuyoshi</creator><creator>Asada, Hironori</creator><creator>Fukuma, Yasuhiro</creator><general>MYU Scientific Publishing Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190819</creationdate><title>Spin Seebeck Effect in Neodymium Iron Garnet Multilayers</title><author>Tyagi, Shashank ; Maeda, Taito ; Kimura, Keisuke ; Gupta, Surbhi ; Kishimoto, Kengo ; Koyanagi, Tsuyoshi ; Asada, Hironori ; Fukuma, Yasuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-573404f6c898dc4078d945222f1eb7aa374cd44dafd8fe67a46fb9dfe81d23c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bismuth</topic><topic>Energy harvesting</topic><topic>Gadolinium</topic><topic>Gallium</topic><topic>Heavy metals</topic><topic>Interfacial properties</topic><topic>Iron</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>Multilayers</topic><topic>Neodymium</topic><topic>Seebeck effect</topic><topic>Spintronics</topic><topic>Substitutes</topic><topic>Substrates</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tyagi, Shashank</creatorcontrib><creatorcontrib>Maeda, Taito</creatorcontrib><creatorcontrib>Kimura, Keisuke</creatorcontrib><creatorcontrib>Gupta, Surbhi</creatorcontrib><creatorcontrib>Kishimoto, Kengo</creatorcontrib><creatorcontrib>Koyanagi, Tsuyoshi</creatorcontrib><creatorcontrib>Asada, Hironori</creatorcontrib><creatorcontrib>Fukuma, Yasuhiro</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tyagi, Shashank</au><au>Maeda, Taito</au><au>Kimura, Keisuke</au><au>Gupta, Surbhi</au><au>Kishimoto, Kengo</au><au>Koyanagi, Tsuyoshi</au><au>Asada, Hironori</au><au>Fukuma, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin Seebeck Effect in Neodymium Iron Garnet Multilayers</atitle><jtitle>Sensors and materials</jtitle><date>2019-08-19</date><risdate>2019</risdate><volume>31</volume><issue>8</issue><spage>2541</spage><pages>2541-</pages><issn>0914-4935</issn><abstract>Nanoscale sensing applications require significant usage of power which can be achieved through efficient management of omnipresent heat. The spin Seebeck effect (SSE) is rather fresh energy harvesting phenomenon that enables the conversion of temperature gradient across magnetic materials into spin current. This spin current can further be converted into charge current by adjoining heavy metals to the magnet. In this study, we fabricated the thermoelectric multilayer films of bismuth-substituted neodymium iron garnet (Nd2Bi1Fe5O12) (NIG) as well as gallium and bismuth co-substituted neodymium iron garnet (Nd2Bi1Fe4Ga1O12) (NIGG) on (111)-oriented gallium gadolinium garnet substrates by metal organic decomposition method. The thickness of the NIG and NIGG multilayers are varied to control the magnetic properties. The observed spin Seebeck signal is found to be directly dependent on garnet/heavy metal interface and tended to decrease in intensity with increasing amount of NIGG in the garnet multilayers. Our results emphasize the importance of magnet/heavy metal interface properties for designing of SSE based sensors.</abstract><cop>Tokyo</cop><pub>MYU Scientific Publishing Division</pub><doi>10.18494/SAM.2019.2335</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0914-4935 |
ispartof | Sensors and materials, 2019-08, Vol.31 (8), p.2541 |
issn | 0914-4935 |
language | eng |
recordid | cdi_proquest_journals_2282017421 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Bismuth Energy harvesting Gadolinium Gallium Heavy metals Interfacial properties Iron Magnetic materials Magnetic properties Multilayers Neodymium Seebeck effect Spintronics Substitutes Substrates Temperature gradients |
title | Spin Seebeck Effect in Neodymium Iron Garnet Multilayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20Seebeck%20Effect%20in%20Neodymium%20Iron%20Garnet%20Multilayers&rft.jtitle=Sensors%20and%20materials&rft.au=Tyagi,%20Shashank&rft.date=2019-08-19&rft.volume=31&rft.issue=8&rft.spage=2541&rft.pages=2541-&rft.issn=0914-4935&rft_id=info:doi/10.18494/SAM.2019.2335&rft_dat=%3Cproquest_cross%3E2282017421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2282017421&rft_id=info:pmid/&rfr_iscdi=true |