Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation

With the inhomogeneities of media taken into account, a generalized variable-coefficient Kadomtsev–Petviashvili (vcKP) equation is proposed to model nonlinear waves in fluid mechanics and plasma physics. Based on Hirota bilinear method and symbolic computation, we present lump and lump–soliton inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2019-10, Vol.98 (1), p.551-560
Hauptverfasser: Xu, Hui, Ma, Zhengyi, Fei, Jinxi, Zhu, Quanyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560
container_issue 1
container_start_page 551
container_title Nonlinear dynamics
container_volume 98
creator Xu, Hui
Ma, Zhengyi
Fei, Jinxi
Zhu, Quanyong
description With the inhomogeneities of media taken into account, a generalized variable-coefficient Kadomtsev–Petviashvili (vcKP) equation is proposed to model nonlinear waves in fluid mechanics and plasma physics. Based on Hirota bilinear method and symbolic computation, we present lump and lump–soliton interaction solutions of the vcKP equation. These local solutions are derived by taking the auxiliary function as the positive quadratic function or the linear combination of the positive quadratic function and the exponential function. Compared with the results allowed by the constant-coefficient KP equation, lump and lump–soliton solutions for the vcKP equation possess more abundant properties. It is shown that the velocity, moving path, and maximum height of the lump are completely characterized by the time functions rather than the constant parameters. The interaction between a lump and one line soliton are still nonelastic, but the track of the lump obeys the controllable function of time. The lump interacting with resonance soliton pairs exhibits a kind of special rogue wave in which the peak emerges and evolves with the varying path. The detailed analysis and discussion of these solutions are provided and illustrated.
doi_str_mv 10.1007/s11071-019-05211-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2281577884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281577884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f50de77b1b502a2470d2f4eeb5818b40738c574f737b79a584d8de7d0e8ccfd03</originalsourceid><addsrcrecordid>eNp9kM1KJDEUhYMo2Oq8gKvArDNzk6oyqeUg88eI48KB3oVU6qY7Ul1pk1SBruYRBN9wnmTStuDOVQ7Jd07gI-ScwycOID8nzkFyBrxl0AjOmTggC97IiomLdnlIFtCKmkELy2NyktIdAFQC1II8XYcZB2rXJhqbMfqUvU00ODpMmy01Y_8S_v19TmHwOYzUjwUrrC-53E27kGgONK-RrnAsj4N_xJ7OJnrTDchsQOe89Thm-sv0YZMTzmXxBvPsTVrPfvAU7yezmzojR84MCT-8nqfkz7evt5c_2NXv7z8vv1wxW_E2M9dAj1J2vGtAGFFL6IWrEbtGcdXVICtlG1k7WclOtqZRda9KoQdU1roeqlPycb-7jeF-wpT1XZjiWL7UQqiiTipVF0rsKRtDShGd3ka_MfFBc9A783pvXhfz-sW8FqVU7UupwOMK49v0O63_MHGNIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281577884</pqid></control><display><type>article</type><title>Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation</title><source>Springer Online Journals Complete</source><creator>Xu, Hui ; Ma, Zhengyi ; Fei, Jinxi ; Zhu, Quanyong</creator><creatorcontrib>Xu, Hui ; Ma, Zhengyi ; Fei, Jinxi ; Zhu, Quanyong</creatorcontrib><description>With the inhomogeneities of media taken into account, a generalized variable-coefficient Kadomtsev–Petviashvili (vcKP) equation is proposed to model nonlinear waves in fluid mechanics and plasma physics. Based on Hirota bilinear method and symbolic computation, we present lump and lump–soliton interaction solutions of the vcKP equation. These local solutions are derived by taking the auxiliary function as the positive quadratic function or the linear combination of the positive quadratic function and the exponential function. Compared with the results allowed by the constant-coefficient KP equation, lump and lump–soliton solutions for the vcKP equation possess more abundant properties. It is shown that the velocity, moving path, and maximum height of the lump are completely characterized by the time functions rather than the constant parameters. The interaction between a lump and one line soliton are still nonelastic, but the track of the lump obeys the controllable function of time. The lump interacting with resonance soliton pairs exhibits a kind of special rogue wave in which the peak emerges and evolves with the varying path. The detailed analysis and discussion of these solutions are provided and illustrated.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-019-05211-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Coefficients ; Computational fluid dynamics ; Control ; Dynamical Systems ; Engineering ; Exponential functions ; Fluid mechanics ; Interaction parameters ; Mechanical Engineering ; Original Paper ; Plasma physics ; Quadratic equations ; Solitary waves ; Time functions ; Vibration</subject><ispartof>Nonlinear dynamics, 2019-10, Vol.98 (1), p.551-560</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f50de77b1b502a2470d2f4eeb5818b40738c574f737b79a584d8de7d0e8ccfd03</citedby><cites>FETCH-LOGICAL-c319t-f50de77b1b502a2470d2f4eeb5818b40738c574f737b79a584d8de7d0e8ccfd03</cites><orcidid>0000-0002-5389-2052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-019-05211-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-019-05211-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Ma, Zhengyi</creatorcontrib><creatorcontrib>Fei, Jinxi</creatorcontrib><creatorcontrib>Zhu, Quanyong</creatorcontrib><title>Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>With the inhomogeneities of media taken into account, a generalized variable-coefficient Kadomtsev–Petviashvili (vcKP) equation is proposed to model nonlinear waves in fluid mechanics and plasma physics. Based on Hirota bilinear method and symbolic computation, we present lump and lump–soliton interaction solutions of the vcKP equation. These local solutions are derived by taking the auxiliary function as the positive quadratic function or the linear combination of the positive quadratic function and the exponential function. Compared with the results allowed by the constant-coefficient KP equation, lump and lump–soliton solutions for the vcKP equation possess more abundant properties. It is shown that the velocity, moving path, and maximum height of the lump are completely characterized by the time functions rather than the constant parameters. The interaction between a lump and one line soliton are still nonelastic, but the track of the lump obeys the controllable function of time. The lump interacting with resonance soliton pairs exhibits a kind of special rogue wave in which the peak emerges and evolves with the varying path. The detailed analysis and discussion of these solutions are provided and illustrated.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Coefficients</subject><subject>Computational fluid dynamics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Exponential functions</subject><subject>Fluid mechanics</subject><subject>Interaction parameters</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Plasma physics</subject><subject>Quadratic equations</subject><subject>Solitary waves</subject><subject>Time functions</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KJDEUhYMo2Oq8gKvArDNzk6oyqeUg88eI48KB3oVU6qY7Ul1pk1SBruYRBN9wnmTStuDOVQ7Jd07gI-ScwycOID8nzkFyBrxl0AjOmTggC97IiomLdnlIFtCKmkELy2NyktIdAFQC1II8XYcZB2rXJhqbMfqUvU00ODpMmy01Y_8S_v19TmHwOYzUjwUrrC-53E27kGgONK-RrnAsj4N_xJ7OJnrTDchsQOe89Thm-sv0YZMTzmXxBvPsTVrPfvAU7yezmzojR84MCT-8nqfkz7evt5c_2NXv7z8vv1wxW_E2M9dAj1J2vGtAGFFL6IWrEbtGcdXVICtlG1k7WclOtqZRda9KoQdU1roeqlPycb-7jeF-wpT1XZjiWL7UQqiiTipVF0rsKRtDShGd3ka_MfFBc9A783pvXhfz-sW8FqVU7UupwOMK49v0O63_MHGNIQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Xu, Hui</creator><creator>Ma, Zhengyi</creator><creator>Fei, Jinxi</creator><creator>Zhu, Quanyong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5389-2052</orcidid></search><sort><creationdate>20191001</creationdate><title>Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation</title><author>Xu, Hui ; Ma, Zhengyi ; Fei, Jinxi ; Zhu, Quanyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f50de77b1b502a2470d2f4eeb5818b40738c574f737b79a584d8de7d0e8ccfd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Coefficients</topic><topic>Computational fluid dynamics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Exponential functions</topic><topic>Fluid mechanics</topic><topic>Interaction parameters</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Plasma physics</topic><topic>Quadratic equations</topic><topic>Solitary waves</topic><topic>Time functions</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Ma, Zhengyi</creatorcontrib><creatorcontrib>Fei, Jinxi</creatorcontrib><creatorcontrib>Zhu, Quanyong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Hui</au><au>Ma, Zhengyi</au><au>Fei, Jinxi</au><au>Zhu, Quanyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>98</volume><issue>1</issue><spage>551</spage><epage>560</epage><pages>551-560</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>With the inhomogeneities of media taken into account, a generalized variable-coefficient Kadomtsev–Petviashvili (vcKP) equation is proposed to model nonlinear waves in fluid mechanics and plasma physics. Based on Hirota bilinear method and symbolic computation, we present lump and lump–soliton interaction solutions of the vcKP equation. These local solutions are derived by taking the auxiliary function as the positive quadratic function or the linear combination of the positive quadratic function and the exponential function. Compared with the results allowed by the constant-coefficient KP equation, lump and lump–soliton solutions for the vcKP equation possess more abundant properties. It is shown that the velocity, moving path, and maximum height of the lump are completely characterized by the time functions rather than the constant parameters. The interaction between a lump and one line soliton are still nonelastic, but the track of the lump obeys the controllable function of time. The lump interacting with resonance soliton pairs exhibits a kind of special rogue wave in which the peak emerges and evolves with the varying path. The detailed analysis and discussion of these solutions are provided and illustrated.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-019-05211-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5389-2052</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2019-10, Vol.98 (1), p.551-560
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2281577884
source Springer Online Journals Complete
subjects Automotive Engineering
Classical Mechanics
Coefficients
Computational fluid dynamics
Control
Dynamical Systems
Engineering
Exponential functions
Fluid mechanics
Interaction parameters
Mechanical Engineering
Original Paper
Plasma physics
Quadratic equations
Solitary waves
Time functions
Vibration
title Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20characteristics%20of%20lump%20and%20lump%E2%80%93soliton%20interaction%20solutions%20to%20the%20generalized%20variable-coefficient%20Kadomtsev%E2%80%93Petviashvili%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Xu,%20Hui&rft.date=2019-10-01&rft.volume=98&rft.issue=1&rft.spage=551&rft.epage=560&rft.pages=551-560&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-019-05211-2&rft_dat=%3Cproquest_cross%3E2281577884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281577884&rft_id=info:pmid/&rfr_iscdi=true