Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation
With the inhomogeneities of media taken into account, a generalized variable-coefficient Kadomtsev–Petviashvili (vcKP) equation is proposed to model nonlinear waves in fluid mechanics and plasma physics. Based on Hirota bilinear method and symbolic computation, we present lump and lump–soliton inter...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2019-10, Vol.98 (1), p.551-560 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 560 |
---|---|
container_issue | 1 |
container_start_page | 551 |
container_title | Nonlinear dynamics |
container_volume | 98 |
creator | Xu, Hui Ma, Zhengyi Fei, Jinxi Zhu, Quanyong |
description | With the inhomogeneities of media taken into account, a generalized variable-coefficient Kadomtsev–Petviashvili (vcKP) equation is proposed to model nonlinear waves in fluid mechanics and plasma physics. Based on Hirota bilinear method and symbolic computation, we present lump and lump–soliton interaction solutions of the vcKP equation. These local solutions are derived by taking the auxiliary function as the positive quadratic function or the linear combination of the positive quadratic function and the exponential function. Compared with the results allowed by the constant-coefficient KP equation, lump and lump–soliton solutions for the vcKP equation possess more abundant properties. It is shown that the velocity, moving path, and maximum height of the lump are completely characterized by the time functions rather than the constant parameters. The interaction between a lump and one line soliton are still nonelastic, but the track of the lump obeys the controllable function of time. The lump interacting with resonance soliton pairs exhibits a kind of special rogue wave in which the peak emerges and evolves with the varying path. The detailed analysis and discussion of these solutions are provided and illustrated. |
doi_str_mv | 10.1007/s11071-019-05211-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2281577884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281577884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f50de77b1b502a2470d2f4eeb5818b40738c574f737b79a584d8de7d0e8ccfd03</originalsourceid><addsrcrecordid>eNp9kM1KJDEUhYMo2Oq8gKvArDNzk6oyqeUg88eI48KB3oVU6qY7Ul1pk1SBruYRBN9wnmTStuDOVQ7Jd07gI-ScwycOID8nzkFyBrxl0AjOmTggC97IiomLdnlIFtCKmkELy2NyktIdAFQC1II8XYcZB2rXJhqbMfqUvU00ODpMmy01Y_8S_v19TmHwOYzUjwUrrC-53E27kGgONK-RrnAsj4N_xJ7OJnrTDchsQOe89Thm-sv0YZMTzmXxBvPsTVrPfvAU7yezmzojR84MCT-8nqfkz7evt5c_2NXv7z8vv1wxW_E2M9dAj1J2vGtAGFFL6IWrEbtGcdXVICtlG1k7WclOtqZRda9KoQdU1roeqlPycb-7jeF-wpT1XZjiWL7UQqiiTipVF0rsKRtDShGd3ka_MfFBc9A783pvXhfz-sW8FqVU7UupwOMK49v0O63_MHGNIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281577884</pqid></control><display><type>article</type><title>Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation</title><source>Springer Online Journals Complete</source><creator>Xu, Hui ; Ma, Zhengyi ; Fei, Jinxi ; Zhu, Quanyong</creator><creatorcontrib>Xu, Hui ; Ma, Zhengyi ; Fei, Jinxi ; Zhu, Quanyong</creatorcontrib><description>With the inhomogeneities of media taken into account, a generalized variable-coefficient Kadomtsev–Petviashvili (vcKP) equation is proposed to model nonlinear waves in fluid mechanics and plasma physics. Based on Hirota bilinear method and symbolic computation, we present lump and lump–soliton interaction solutions of the vcKP equation. These local solutions are derived by taking the auxiliary function as the positive quadratic function or the linear combination of the positive quadratic function and the exponential function. Compared with the results allowed by the constant-coefficient KP equation, lump and lump–soliton solutions for the vcKP equation possess more abundant properties. It is shown that the velocity, moving path, and maximum height of the lump are completely characterized by the time functions rather than the constant parameters. The interaction between a lump and one line soliton are still nonelastic, but the track of the lump obeys the controllable function of time. The lump interacting with resonance soliton pairs exhibits a kind of special rogue wave in which the peak emerges and evolves with the varying path. The detailed analysis and discussion of these solutions are provided and illustrated.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-019-05211-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Coefficients ; Computational fluid dynamics ; Control ; Dynamical Systems ; Engineering ; Exponential functions ; Fluid mechanics ; Interaction parameters ; Mechanical Engineering ; Original Paper ; Plasma physics ; Quadratic equations ; Solitary waves ; Time functions ; Vibration</subject><ispartof>Nonlinear dynamics, 2019-10, Vol.98 (1), p.551-560</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f50de77b1b502a2470d2f4eeb5818b40738c574f737b79a584d8de7d0e8ccfd03</citedby><cites>FETCH-LOGICAL-c319t-f50de77b1b502a2470d2f4eeb5818b40738c574f737b79a584d8de7d0e8ccfd03</cites><orcidid>0000-0002-5389-2052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-019-05211-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-019-05211-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Ma, Zhengyi</creatorcontrib><creatorcontrib>Fei, Jinxi</creatorcontrib><creatorcontrib>Zhu, Quanyong</creatorcontrib><title>Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>With the inhomogeneities of media taken into account, a generalized variable-coefficient Kadomtsev–Petviashvili (vcKP) equation is proposed to model nonlinear waves in fluid mechanics and plasma physics. Based on Hirota bilinear method and symbolic computation, we present lump and lump–soliton interaction solutions of the vcKP equation. These local solutions are derived by taking the auxiliary function as the positive quadratic function or the linear combination of the positive quadratic function and the exponential function. Compared with the results allowed by the constant-coefficient KP equation, lump and lump–soliton solutions for the vcKP equation possess more abundant properties. It is shown that the velocity, moving path, and maximum height of the lump are completely characterized by the time functions rather than the constant parameters. The interaction between a lump and one line soliton are still nonelastic, but the track of the lump obeys the controllable function of time. The lump interacting with resonance soliton pairs exhibits a kind of special rogue wave in which the peak emerges and evolves with the varying path. The detailed analysis and discussion of these solutions are provided and illustrated.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Coefficients</subject><subject>Computational fluid dynamics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Exponential functions</subject><subject>Fluid mechanics</subject><subject>Interaction parameters</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Plasma physics</subject><subject>Quadratic equations</subject><subject>Solitary waves</subject><subject>Time functions</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KJDEUhYMo2Oq8gKvArDNzk6oyqeUg88eI48KB3oVU6qY7Ul1pk1SBruYRBN9wnmTStuDOVQ7Jd07gI-ScwycOID8nzkFyBrxl0AjOmTggC97IiomLdnlIFtCKmkELy2NyktIdAFQC1II8XYcZB2rXJhqbMfqUvU00ODpMmy01Y_8S_v19TmHwOYzUjwUrrC-53E27kGgONK-RrnAsj4N_xJ7OJnrTDchsQOe89Thm-sv0YZMTzmXxBvPsTVrPfvAU7yezmzojR84MCT-8nqfkz7evt5c_2NXv7z8vv1wxW_E2M9dAj1J2vGtAGFFL6IWrEbtGcdXVICtlG1k7WclOtqZRda9KoQdU1roeqlPycb-7jeF-wpT1XZjiWL7UQqiiTipVF0rsKRtDShGd3ka_MfFBc9A783pvXhfz-sW8FqVU7UupwOMK49v0O63_MHGNIQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Xu, Hui</creator><creator>Ma, Zhengyi</creator><creator>Fei, Jinxi</creator><creator>Zhu, Quanyong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5389-2052</orcidid></search><sort><creationdate>20191001</creationdate><title>Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation</title><author>Xu, Hui ; Ma, Zhengyi ; Fei, Jinxi ; Zhu, Quanyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f50de77b1b502a2470d2f4eeb5818b40738c574f737b79a584d8de7d0e8ccfd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Coefficients</topic><topic>Computational fluid dynamics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Exponential functions</topic><topic>Fluid mechanics</topic><topic>Interaction parameters</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Plasma physics</topic><topic>Quadratic equations</topic><topic>Solitary waves</topic><topic>Time functions</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Ma, Zhengyi</creatorcontrib><creatorcontrib>Fei, Jinxi</creatorcontrib><creatorcontrib>Zhu, Quanyong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Hui</au><au>Ma, Zhengyi</au><au>Fei, Jinxi</au><au>Zhu, Quanyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>98</volume><issue>1</issue><spage>551</spage><epage>560</epage><pages>551-560</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>With the inhomogeneities of media taken into account, a generalized variable-coefficient Kadomtsev–Petviashvili (vcKP) equation is proposed to model nonlinear waves in fluid mechanics and plasma physics. Based on Hirota bilinear method and symbolic computation, we present lump and lump–soliton interaction solutions of the vcKP equation. These local solutions are derived by taking the auxiliary function as the positive quadratic function or the linear combination of the positive quadratic function and the exponential function. Compared with the results allowed by the constant-coefficient KP equation, lump and lump–soliton solutions for the vcKP equation possess more abundant properties. It is shown that the velocity, moving path, and maximum height of the lump are completely characterized by the time functions rather than the constant parameters. The interaction between a lump and one line soliton are still nonelastic, but the track of the lump obeys the controllable function of time. The lump interacting with resonance soliton pairs exhibits a kind of special rogue wave in which the peak emerges and evolves with the varying path. The detailed analysis and discussion of these solutions are provided and illustrated.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-019-05211-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5389-2052</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2019-10, Vol.98 (1), p.551-560 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2281577884 |
source | Springer Online Journals Complete |
subjects | Automotive Engineering Classical Mechanics Coefficients Computational fluid dynamics Control Dynamical Systems Engineering Exponential functions Fluid mechanics Interaction parameters Mechanical Engineering Original Paper Plasma physics Quadratic equations Solitary waves Time functions Vibration |
title | Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20characteristics%20of%20lump%20and%20lump%E2%80%93soliton%20interaction%20solutions%20to%20the%20generalized%20variable-coefficient%20Kadomtsev%E2%80%93Petviashvili%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Xu,%20Hui&rft.date=2019-10-01&rft.volume=98&rft.issue=1&rft.spage=551&rft.epage=560&rft.pages=551-560&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-019-05211-2&rft_dat=%3Cproquest_cross%3E2281577884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281577884&rft_id=info:pmid/&rfr_iscdi=true |