Multiscale roughness and modeling of MEMS interfaces

Investigation of contact and friction at multiple length scales is necessary for the design of surfaces in sliding microelectromechanical system (MEMS). A method is developed to investigate the geometry of summits at different length scales. Analysis of density, height, and curvature of summits on a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tribology letters 2005-05, Vol.19 (1), p.37-48
Hauptverfasser: Bora, C.K., Flater, E.E., Street, M.D., Redmond, J.M., Starr, M.J., Carpick, R.W., Plesha, M.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 37
container_title Tribology letters
container_volume 19
creator Bora, C.K.
Flater, E.E.
Street, M.D.
Redmond, J.M.
Starr, M.J.
Carpick, R.W.
Plesha, M.E.
description Investigation of contact and friction at multiple length scales is necessary for the design of surfaces in sliding microelectromechanical system (MEMS). A method is developed to investigate the geometry of summits at different length scales. Analysis of density, height, and curvature of summits on atomic force microscopy (AFM) images of actual silicon MEMS surfaces shows that these properties have a power law relationship with the sampling size used to define a summit, and no well-defined value for any is found, even at the smallest experimentally accessible length scale. This behavior and its similarity to results for fractal Weierstrass-Mandelbrot (W-M) function approximations indicate that a multiscale model is required to properly describe these surfaces. A multiscale contact model is developed to describe the behavior of asperities at different discrete length scales using an elastic single asperity contact description. The contact behavior is shown to be independent of the scaling constant when asperity heights and radii are scaled correctly in the model.
doi_str_mv 10.1007/s11249-005-4263-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2281373314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281373314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-61dbef819ba7713c4736c15e56316707c5dade829c2754f1882ac5403fc54bb23</originalsourceid><addsrcrecordid>eNotkMFOwzAMhiMEEmPwANwqcQ7EcdJkRzQNhrSKA3CO0jQZnbp2JO2BtydTudjWr8-29BFyD-wRGFNPCYCLFWVMUsFLpPqCLEAqpFwBXOaZ8RxqjdfkJqUDY3lLywUR1dSNbXK280Ucpv1371MqbN8Ux6HxXdvviyEU1ab6KNp-9DFY59MtuQq2S_7uvy_J18vmc72lu_fXt_XzjjqucKQlNLUPGla1VQrQCYWlA-lliVAqppxsbOM1X2VcigBac-ukYBhyrWuOS_Iw3z3F4WfyaTSHYYp9fmk414AKEUSmYKZcHFKKPphTbI82_hpg5izHzHJMlmPOcozGP8Z8VX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281373314</pqid></control><display><type>article</type><title>Multiscale roughness and modeling of MEMS interfaces</title><source>SpringerLink Journals</source><creator>Bora, C.K. ; Flater, E.E. ; Street, M.D. ; Redmond, J.M. ; Starr, M.J. ; Carpick, R.W. ; Plesha, M.E.</creator><creatorcontrib>Bora, C.K. ; Flater, E.E. ; Street, M.D. ; Redmond, J.M. ; Starr, M.J. ; Carpick, R.W. ; Plesha, M.E.</creatorcontrib><description>Investigation of contact and friction at multiple length scales is necessary for the design of surfaces in sliding microelectromechanical system (MEMS). A method is developed to investigate the geometry of summits at different length scales. Analysis of density, height, and curvature of summits on atomic force microscopy (AFM) images of actual silicon MEMS surfaces shows that these properties have a power law relationship with the sampling size used to define a summit, and no well-defined value for any is found, even at the smallest experimentally accessible length scale. This behavior and its similarity to results for fractal Weierstrass-Mandelbrot (W-M) function approximations indicate that a multiscale model is required to properly describe these surfaces. A multiscale contact model is developed to describe the behavior of asperities at different discrete length scales using an elastic single asperity contact description. The contact behavior is shown to be independent of the scaling constant when asperity heights and radii are scaled correctly in the model.</description><identifier>ISSN: 1023-8883</identifier><identifier>EISSN: 1573-2711</identifier><identifier>DOI: 10.1007/s11249-005-4263-8</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Asperity ; Atomic force microscopy ; Curvature ; Microelectromechanical systems ; Tribology</subject><ispartof>Tribology letters, 2005-05, Vol.19 (1), p.37-48</ispartof><rights>Tribology Letters is a copyright of Springer, (2005). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-61dbef819ba7713c4736c15e56316707c5dade829c2754f1882ac5403fc54bb23</citedby><cites>FETCH-LOGICAL-c273t-61dbef819ba7713c4736c15e56316707c5dade829c2754f1882ac5403fc54bb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bora, C.K.</creatorcontrib><creatorcontrib>Flater, E.E.</creatorcontrib><creatorcontrib>Street, M.D.</creatorcontrib><creatorcontrib>Redmond, J.M.</creatorcontrib><creatorcontrib>Starr, M.J.</creatorcontrib><creatorcontrib>Carpick, R.W.</creatorcontrib><creatorcontrib>Plesha, M.E.</creatorcontrib><title>Multiscale roughness and modeling of MEMS interfaces</title><title>Tribology letters</title><description>Investigation of contact and friction at multiple length scales is necessary for the design of surfaces in sliding microelectromechanical system (MEMS). A method is developed to investigate the geometry of summits at different length scales. Analysis of density, height, and curvature of summits on atomic force microscopy (AFM) images of actual silicon MEMS surfaces shows that these properties have a power law relationship with the sampling size used to define a summit, and no well-defined value for any is found, even at the smallest experimentally accessible length scale. This behavior and its similarity to results for fractal Weierstrass-Mandelbrot (W-M) function approximations indicate that a multiscale model is required to properly describe these surfaces. A multiscale contact model is developed to describe the behavior of asperities at different discrete length scales using an elastic single asperity contact description. The contact behavior is shown to be independent of the scaling constant when asperity heights and radii are scaled correctly in the model.</description><subject>Asperity</subject><subject>Atomic force microscopy</subject><subject>Curvature</subject><subject>Microelectromechanical systems</subject><subject>Tribology</subject><issn>1023-8883</issn><issn>1573-2711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkMFOwzAMhiMEEmPwANwqcQ7EcdJkRzQNhrSKA3CO0jQZnbp2JO2BtydTudjWr8-29BFyD-wRGFNPCYCLFWVMUsFLpPqCLEAqpFwBXOaZ8RxqjdfkJqUDY3lLywUR1dSNbXK280Ucpv1371MqbN8Ux6HxXdvviyEU1ab6KNp-9DFY59MtuQq2S_7uvy_J18vmc72lu_fXt_XzjjqucKQlNLUPGla1VQrQCYWlA-lliVAqppxsbOM1X2VcigBac-ukYBhyrWuOS_Iw3z3F4WfyaTSHYYp9fmk414AKEUSmYKZcHFKKPphTbI82_hpg5izHzHJMlmPOcozGP8Z8VX0</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Bora, C.K.</creator><creator>Flater, E.E.</creator><creator>Street, M.D.</creator><creator>Redmond, J.M.</creator><creator>Starr, M.J.</creator><creator>Carpick, R.W.</creator><creator>Plesha, M.E.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>200505</creationdate><title>Multiscale roughness and modeling of MEMS interfaces</title><author>Bora, C.K. ; Flater, E.E. ; Street, M.D. ; Redmond, J.M. ; Starr, M.J. ; Carpick, R.W. ; Plesha, M.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-61dbef819ba7713c4736c15e56316707c5dade829c2754f1882ac5403fc54bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Asperity</topic><topic>Atomic force microscopy</topic><topic>Curvature</topic><topic>Microelectromechanical systems</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bora, C.K.</creatorcontrib><creatorcontrib>Flater, E.E.</creatorcontrib><creatorcontrib>Street, M.D.</creatorcontrib><creatorcontrib>Redmond, J.M.</creatorcontrib><creatorcontrib>Starr, M.J.</creatorcontrib><creatorcontrib>Carpick, R.W.</creatorcontrib><creatorcontrib>Plesha, M.E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Tribology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bora, C.K.</au><au>Flater, E.E.</au><au>Street, M.D.</au><au>Redmond, J.M.</au><au>Starr, M.J.</au><au>Carpick, R.W.</au><au>Plesha, M.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale roughness and modeling of MEMS interfaces</atitle><jtitle>Tribology letters</jtitle><date>2005-05</date><risdate>2005</risdate><volume>19</volume><issue>1</issue><spage>37</spage><epage>48</epage><pages>37-48</pages><issn>1023-8883</issn><eissn>1573-2711</eissn><abstract>Investigation of contact and friction at multiple length scales is necessary for the design of surfaces in sliding microelectromechanical system (MEMS). A method is developed to investigate the geometry of summits at different length scales. Analysis of density, height, and curvature of summits on atomic force microscopy (AFM) images of actual silicon MEMS surfaces shows that these properties have a power law relationship with the sampling size used to define a summit, and no well-defined value for any is found, even at the smallest experimentally accessible length scale. This behavior and its similarity to results for fractal Weierstrass-Mandelbrot (W-M) function approximations indicate that a multiscale model is required to properly describe these surfaces. A multiscale contact model is developed to describe the behavior of asperities at different discrete length scales using an elastic single asperity contact description. The contact behavior is shown to be independent of the scaling constant when asperity heights and radii are scaled correctly in the model.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11249-005-4263-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1023-8883
ispartof Tribology letters, 2005-05, Vol.19 (1), p.37-48
issn 1023-8883
1573-2711
language eng
recordid cdi_proquest_journals_2281373314
source SpringerLink Journals
subjects Asperity
Atomic force microscopy
Curvature
Microelectromechanical systems
Tribology
title Multiscale roughness and modeling of MEMS interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20roughness%20and%20modeling%20of%20MEMS%20interfaces&rft.jtitle=Tribology%20letters&rft.au=Bora,%20C.K.&rft.date=2005-05&rft.volume=19&rft.issue=1&rft.spage=37&rft.epage=48&rft.pages=37-48&rft.issn=1023-8883&rft.eissn=1573-2711&rft_id=info:doi/10.1007/s11249-005-4263-8&rft_dat=%3Cproquest_cross%3E2281373314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281373314&rft_id=info:pmid/&rfr_iscdi=true