Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum

The friction coefficient is measured for systems consisting of a thin potassium chloride film deposited onto a variety of clean, flat metal substrates, namely Pb, Sn, Au, Ag, Cu, Pd, Fe, Ta, and two types of steel, which are rubbed by a tungsten carbide pin in an ultrahigh vacuum. The friction coeff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tribology letters 2008-08, Vol.31 (2), p.99-106
Hauptverfasser: Gao, Feng, Furlong, Octavio, Kotvis, Peter V., Tysoe, W. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue 2
container_start_page 99
container_title Tribology letters
container_volume 31
creator Gao, Feng
Furlong, Octavio
Kotvis, Peter V.
Tysoe, W. T.
description The friction coefficient is measured for systems consisting of a thin potassium chloride film deposited onto a variety of clean, flat metal substrates, namely Pb, Sn, Au, Ag, Cu, Pd, Fe, Ta, and two types of steel, which are rubbed by a tungsten carbide pin in an ultrahigh vacuum. The friction coefficients are plotted versus 1/ H S , the inverse of the substrate hardness, where two regimes are found. In the first regime, where deformation at the asperity tips is suggested to be plastic, the observed variation in friction coefficient with substrate hardness is rationalized by assuming that the shear strength S for sliding on a KCl film varies with contact pressure P as S = S 0 + aP , yielding values for a of 0.14 ± 0.02 and S 0 of ~60–70 MPa. In the second regime, it is proposed that the softer, film-covered Pb and Sn substrates are closer to being in conformal contact with the rough tribopin. These values of S 0 and a , along with the measured surface asperity height distribution of the tribopin and the value of the friction coefficient for a KCl monolayer on the metal, are used to rationalize the observed increase in friction coefficient with increasing film thickness.
doi_str_mv 10.1007/s11249-008-9342-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2281346514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281346514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5032f719426fd943ca1af91804581c3124e4142e8b5df4ec97f5573dcff6dfd63</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhCMEEqXwANwscTZ4bSdxjqhQQCoCqS1XyzjrJlWaFDs58PY4ChInTvujb2a1kyTXwG6BsfwuAHBZUMYULYTkFE6SGaS5oDwHOI0944IqpcR5chHCnrGoUuksse8eQxg8kgc8Yltia5F0jqwrNJ6se4_trq_CuNpUdUuWdXOIU0tesTcNWQ_eGYshjmZ0KUlktk3vTVXvKvJh7DAcLpMzZ5qAV791nmyXj5vFM129Pb0s7lfUCsh6mjLBXQ6F5JkrCymsAeMKUEymCiLCJUqQHNVnWjqJtshdGj8srXNZ6cpMzJObyffou68BQ6_33eDbeFJzrkDILAUZKZgo67sQPDp99PXB-G8NTI9Z6ilLHQPSY5YaooZPmhDZdof-z_l_0Q_fOXZe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281346514</pqid></control><display><type>article</type><title>Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Feng ; Furlong, Octavio ; Kotvis, Peter V. ; Tysoe, W. T.</creator><creatorcontrib>Gao, Feng ; Furlong, Octavio ; Kotvis, Peter V. ; Tysoe, W. T.</creatorcontrib><description>The friction coefficient is measured for systems consisting of a thin potassium chloride film deposited onto a variety of clean, flat metal substrates, namely Pb, Sn, Au, Ag, Cu, Pd, Fe, Ta, and two types of steel, which are rubbed by a tungsten carbide pin in an ultrahigh vacuum. The friction coefficients are plotted versus 1/ H S , the inverse of the substrate hardness, where two regimes are found. In the first regime, where deformation at the asperity tips is suggested to be plastic, the observed variation in friction coefficient with substrate hardness is rationalized by assuming that the shear strength S for sliding on a KCl film varies with contact pressure P as S = S 0 + aP , yielding values for a of 0.14 ± 0.02 and S 0 of ~60–70 MPa. In the second regime, it is proposed that the softer, film-covered Pb and Sn substrates are closer to being in conformal contact with the rough tribopin. These values of S 0 and a , along with the measured surface asperity height distribution of the tribopin and the value of the friction coefficient for a KCl monolayer on the metal, are used to rationalize the observed increase in friction coefficient with increasing film thickness.</description><identifier>ISSN: 1023-8883</identifier><identifier>EISSN: 1573-2711</identifier><identifier>DOI: 10.1007/s11249-008-9342-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Asperity ; Chemistry and Materials Science ; Coefficient of friction ; Coefficient of variation ; Contact pressure ; Copper ; Corrosion and Coatings ; Film thickness ; Friction ; Gold ; Hardness ; Iron ; Lead ; Materials Science ; Metal surfaces ; Nanotechnology ; Original Paper ; Palladium ; Physical Chemistry ; Potassium chloride ; Pressure dependence ; Shear strength ; Silver ; Substrates ; Surfaces and Interfaces ; Tantalum ; Theoretical and Applied Mechanics ; Thin Films ; Tin ; Tribology ; Tungsten carbide ; Ultrahigh vacuum</subject><ispartof>Tribology letters, 2008-08, Vol.31 (2), p.99-106</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Tribology Letters is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5032f719426fd943ca1af91804581c3124e4142e8b5df4ec97f5573dcff6dfd63</citedby><cites>FETCH-LOGICAL-c316t-5032f719426fd943ca1af91804581c3124e4142e8b5df4ec97f5573dcff6dfd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11249-008-9342-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11249-008-9342-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Furlong, Octavio</creatorcontrib><creatorcontrib>Kotvis, Peter V.</creatorcontrib><creatorcontrib>Tysoe, W. T.</creatorcontrib><title>Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum</title><title>Tribology letters</title><addtitle>Tribol Lett</addtitle><description>The friction coefficient is measured for systems consisting of a thin potassium chloride film deposited onto a variety of clean, flat metal substrates, namely Pb, Sn, Au, Ag, Cu, Pd, Fe, Ta, and two types of steel, which are rubbed by a tungsten carbide pin in an ultrahigh vacuum. The friction coefficients are plotted versus 1/ H S , the inverse of the substrate hardness, where two regimes are found. In the first regime, where deformation at the asperity tips is suggested to be plastic, the observed variation in friction coefficient with substrate hardness is rationalized by assuming that the shear strength S for sliding on a KCl film varies with contact pressure P as S = S 0 + aP , yielding values for a of 0.14 ± 0.02 and S 0 of ~60–70 MPa. In the second regime, it is proposed that the softer, film-covered Pb and Sn substrates are closer to being in conformal contact with the rough tribopin. These values of S 0 and a , along with the measured surface asperity height distribution of the tribopin and the value of the friction coefficient for a KCl monolayer on the metal, are used to rationalize the observed increase in friction coefficient with increasing film thickness.</description><subject>Asperity</subject><subject>Chemistry and Materials Science</subject><subject>Coefficient of friction</subject><subject>Coefficient of variation</subject><subject>Contact pressure</subject><subject>Copper</subject><subject>Corrosion and Coatings</subject><subject>Film thickness</subject><subject>Friction</subject><subject>Gold</subject><subject>Hardness</subject><subject>Iron</subject><subject>Lead</subject><subject>Materials Science</subject><subject>Metal surfaces</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Palladium</subject><subject>Physical Chemistry</subject><subject>Potassium chloride</subject><subject>Pressure dependence</subject><subject>Shear strength</subject><subject>Silver</subject><subject>Substrates</subject><subject>Surfaces and Interfaces</subject><subject>Tantalum</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thin Films</subject><subject>Tin</subject><subject>Tribology</subject><subject>Tungsten carbide</subject><subject>Ultrahigh vacuum</subject><issn>1023-8883</issn><issn>1573-2711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1OwzAQhCMEEqXwANwscTZ4bSdxjqhQQCoCqS1XyzjrJlWaFDs58PY4ChInTvujb2a1kyTXwG6BsfwuAHBZUMYULYTkFE6SGaS5oDwHOI0944IqpcR5chHCnrGoUuksse8eQxg8kgc8Yltia5F0jqwrNJ6se4_trq_CuNpUdUuWdXOIU0tesTcNWQ_eGYshjmZ0KUlktk3vTVXvKvJh7DAcLpMzZ5qAV791nmyXj5vFM129Pb0s7lfUCsh6mjLBXQ6F5JkrCymsAeMKUEymCiLCJUqQHNVnWjqJtshdGj8srXNZ6cpMzJObyffou68BQ6_33eDbeFJzrkDILAUZKZgo67sQPDp99PXB-G8NTI9Z6ilLHQPSY5YaooZPmhDZdof-z_l_0Q_fOXZe</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Gao, Feng</creator><creator>Furlong, Octavio</creator><creator>Kotvis, Peter V.</creator><creator>Tysoe, W. T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20080801</creationdate><title>Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum</title><author>Gao, Feng ; Furlong, Octavio ; Kotvis, Peter V. ; Tysoe, W. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5032f719426fd943ca1af91804581c3124e4142e8b5df4ec97f5573dcff6dfd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Asperity</topic><topic>Chemistry and Materials Science</topic><topic>Coefficient of friction</topic><topic>Coefficient of variation</topic><topic>Contact pressure</topic><topic>Copper</topic><topic>Corrosion and Coatings</topic><topic>Film thickness</topic><topic>Friction</topic><topic>Gold</topic><topic>Hardness</topic><topic>Iron</topic><topic>Lead</topic><topic>Materials Science</topic><topic>Metal surfaces</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Palladium</topic><topic>Physical Chemistry</topic><topic>Potassium chloride</topic><topic>Pressure dependence</topic><topic>Shear strength</topic><topic>Silver</topic><topic>Substrates</topic><topic>Surfaces and Interfaces</topic><topic>Tantalum</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thin Films</topic><topic>Tin</topic><topic>Tribology</topic><topic>Tungsten carbide</topic><topic>Ultrahigh vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Furlong, Octavio</creatorcontrib><creatorcontrib>Kotvis, Peter V.</creatorcontrib><creatorcontrib>Tysoe, W. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Tribology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Feng</au><au>Furlong, Octavio</au><au>Kotvis, Peter V.</au><au>Tysoe, W. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum</atitle><jtitle>Tribology letters</jtitle><stitle>Tribol Lett</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>31</volume><issue>2</issue><spage>99</spage><epage>106</epage><pages>99-106</pages><issn>1023-8883</issn><eissn>1573-2711</eissn><abstract>The friction coefficient is measured for systems consisting of a thin potassium chloride film deposited onto a variety of clean, flat metal substrates, namely Pb, Sn, Au, Ag, Cu, Pd, Fe, Ta, and two types of steel, which are rubbed by a tungsten carbide pin in an ultrahigh vacuum. The friction coefficients are plotted versus 1/ H S , the inverse of the substrate hardness, where two regimes are found. In the first regime, where deformation at the asperity tips is suggested to be plastic, the observed variation in friction coefficient with substrate hardness is rationalized by assuming that the shear strength S for sliding on a KCl film varies with contact pressure P as S = S 0 + aP , yielding values for a of 0.14 ± 0.02 and S 0 of ~60–70 MPa. In the second regime, it is proposed that the softer, film-covered Pb and Sn substrates are closer to being in conformal contact with the rough tribopin. These values of S 0 and a , along with the measured surface asperity height distribution of the tribopin and the value of the friction coefficient for a KCl monolayer on the metal, are used to rationalize the observed increase in friction coefficient with increasing film thickness.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11249-008-9342-1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1023-8883
ispartof Tribology letters, 2008-08, Vol.31 (2), p.99-106
issn 1023-8883
1573-2711
language eng
recordid cdi_proquest_journals_2281346514
source SpringerLink Journals - AutoHoldings
subjects Asperity
Chemistry and Materials Science
Coefficient of friction
Coefficient of variation
Contact pressure
Copper
Corrosion and Coatings
Film thickness
Friction
Gold
Hardness
Iron
Lead
Materials Science
Metal surfaces
Nanotechnology
Original Paper
Palladium
Physical Chemistry
Potassium chloride
Pressure dependence
Shear strength
Silver
Substrates
Surfaces and Interfaces
Tantalum
Theoretical and Applied Mechanics
Thin Films
Tin
Tribology
Tungsten carbide
Ultrahigh vacuum
title Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure%20Dependence%20of%20Shear%20Strengths%20of%20Thin%20Films%20on%20Metal%20Surfaces%20Measured%20in%20Ultrahigh%20Vacuum&rft.jtitle=Tribology%20letters&rft.au=Gao,%20Feng&rft.date=2008-08-01&rft.volume=31&rft.issue=2&rft.spage=99&rft.epage=106&rft.pages=99-106&rft.issn=1023-8883&rft.eissn=1573-2711&rft_id=info:doi/10.1007/s11249-008-9342-1&rft_dat=%3Cproquest_cross%3E2281346514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281346514&rft_id=info:pmid/&rfr_iscdi=true