Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum
The friction coefficient is measured for systems consisting of a thin potassium chloride film deposited onto a variety of clean, flat metal substrates, namely Pb, Sn, Au, Ag, Cu, Pd, Fe, Ta, and two types of steel, which are rubbed by a tungsten carbide pin in an ultrahigh vacuum. The friction coeff...
Gespeichert in:
Veröffentlicht in: | Tribology letters 2008-08, Vol.31 (2), p.99-106 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | 2 |
container_start_page | 99 |
container_title | Tribology letters |
container_volume | 31 |
creator | Gao, Feng Furlong, Octavio Kotvis, Peter V. Tysoe, W. T. |
description | The friction coefficient is measured for systems consisting of a thin potassium chloride film deposited onto a variety of clean, flat metal substrates, namely Pb, Sn, Au, Ag, Cu, Pd, Fe, Ta, and two types of steel, which are rubbed by a tungsten carbide pin in an ultrahigh vacuum. The friction coefficients are plotted versus 1/
H
S
, the inverse of the substrate hardness, where two regimes are found. In the first regime, where deformation at the asperity tips is suggested to be plastic, the observed variation in friction coefficient with substrate hardness is rationalized by assuming that the shear strength
S
for sliding on a KCl film varies with contact pressure
P
as
S
=
S
0
+
aP
, yielding values for
a
of 0.14 ± 0.02 and
S
0
of ~60–70 MPa. In the second regime, it is proposed that the softer, film-covered Pb and Sn substrates are closer to being in conformal contact with the rough tribopin. These values of
S
0
and
a
, along with the measured surface asperity height distribution of the tribopin and the value of the friction coefficient for a KCl monolayer on the metal, are used to rationalize the observed increase in friction coefficient with increasing film thickness. |
doi_str_mv | 10.1007/s11249-008-9342-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2281346514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281346514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5032f719426fd943ca1af91804581c3124e4142e8b5df4ec97f5573dcff6dfd63</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhCMEEqXwANwscTZ4bSdxjqhQQCoCqS1XyzjrJlWaFDs58PY4ChInTvujb2a1kyTXwG6BsfwuAHBZUMYULYTkFE6SGaS5oDwHOI0944IqpcR5chHCnrGoUuksse8eQxg8kgc8Yltia5F0jqwrNJ6se4_trq_CuNpUdUuWdXOIU0tesTcNWQ_eGYshjmZ0KUlktk3vTVXvKvJh7DAcLpMzZ5qAV791nmyXj5vFM129Pb0s7lfUCsh6mjLBXQ6F5JkrCymsAeMKUEymCiLCJUqQHNVnWjqJtshdGj8srXNZ6cpMzJObyffou68BQ6_33eDbeFJzrkDILAUZKZgo67sQPDp99PXB-G8NTI9Z6ilLHQPSY5YaooZPmhDZdof-z_l_0Q_fOXZe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281346514</pqid></control><display><type>article</type><title>Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Feng ; Furlong, Octavio ; Kotvis, Peter V. ; Tysoe, W. T.</creator><creatorcontrib>Gao, Feng ; Furlong, Octavio ; Kotvis, Peter V. ; Tysoe, W. T.</creatorcontrib><description>The friction coefficient is measured for systems consisting of a thin potassium chloride film deposited onto a variety of clean, flat metal substrates, namely Pb, Sn, Au, Ag, Cu, Pd, Fe, Ta, and two types of steel, which are rubbed by a tungsten carbide pin in an ultrahigh vacuum. The friction coefficients are plotted versus 1/
H
S
, the inverse of the substrate hardness, where two regimes are found. In the first regime, where deformation at the asperity tips is suggested to be plastic, the observed variation in friction coefficient with substrate hardness is rationalized by assuming that the shear strength
S
for sliding on a KCl film varies with contact pressure
P
as
S
=
S
0
+
aP
, yielding values for
a
of 0.14 ± 0.02 and
S
0
of ~60–70 MPa. In the second regime, it is proposed that the softer, film-covered Pb and Sn substrates are closer to being in conformal contact with the rough tribopin. These values of
S
0
and
a
, along with the measured surface asperity height distribution of the tribopin and the value of the friction coefficient for a KCl monolayer on the metal, are used to rationalize the observed increase in friction coefficient with increasing film thickness.</description><identifier>ISSN: 1023-8883</identifier><identifier>EISSN: 1573-2711</identifier><identifier>DOI: 10.1007/s11249-008-9342-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Asperity ; Chemistry and Materials Science ; Coefficient of friction ; Coefficient of variation ; Contact pressure ; Copper ; Corrosion and Coatings ; Film thickness ; Friction ; Gold ; Hardness ; Iron ; Lead ; Materials Science ; Metal surfaces ; Nanotechnology ; Original Paper ; Palladium ; Physical Chemistry ; Potassium chloride ; Pressure dependence ; Shear strength ; Silver ; Substrates ; Surfaces and Interfaces ; Tantalum ; Theoretical and Applied Mechanics ; Thin Films ; Tin ; Tribology ; Tungsten carbide ; Ultrahigh vacuum</subject><ispartof>Tribology letters, 2008-08, Vol.31 (2), p.99-106</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Tribology Letters is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5032f719426fd943ca1af91804581c3124e4142e8b5df4ec97f5573dcff6dfd63</citedby><cites>FETCH-LOGICAL-c316t-5032f719426fd943ca1af91804581c3124e4142e8b5df4ec97f5573dcff6dfd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11249-008-9342-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11249-008-9342-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Furlong, Octavio</creatorcontrib><creatorcontrib>Kotvis, Peter V.</creatorcontrib><creatorcontrib>Tysoe, W. T.</creatorcontrib><title>Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum</title><title>Tribology letters</title><addtitle>Tribol Lett</addtitle><description>The friction coefficient is measured for systems consisting of a thin potassium chloride film deposited onto a variety of clean, flat metal substrates, namely Pb, Sn, Au, Ag, Cu, Pd, Fe, Ta, and two types of steel, which are rubbed by a tungsten carbide pin in an ultrahigh vacuum. The friction coefficients are plotted versus 1/
H
S
, the inverse of the substrate hardness, where two regimes are found. In the first regime, where deformation at the asperity tips is suggested to be plastic, the observed variation in friction coefficient with substrate hardness is rationalized by assuming that the shear strength
S
for sliding on a KCl film varies with contact pressure
P
as
S
=
S
0
+
aP
, yielding values for
a
of 0.14 ± 0.02 and
S
0
of ~60–70 MPa. In the second regime, it is proposed that the softer, film-covered Pb and Sn substrates are closer to being in conformal contact with the rough tribopin. These values of
S
0
and
a
, along with the measured surface asperity height distribution of the tribopin and the value of the friction coefficient for a KCl monolayer on the metal, are used to rationalize the observed increase in friction coefficient with increasing film thickness.</description><subject>Asperity</subject><subject>Chemistry and Materials Science</subject><subject>Coefficient of friction</subject><subject>Coefficient of variation</subject><subject>Contact pressure</subject><subject>Copper</subject><subject>Corrosion and Coatings</subject><subject>Film thickness</subject><subject>Friction</subject><subject>Gold</subject><subject>Hardness</subject><subject>Iron</subject><subject>Lead</subject><subject>Materials Science</subject><subject>Metal surfaces</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Palladium</subject><subject>Physical Chemistry</subject><subject>Potassium chloride</subject><subject>Pressure dependence</subject><subject>Shear strength</subject><subject>Silver</subject><subject>Substrates</subject><subject>Surfaces and Interfaces</subject><subject>Tantalum</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thin Films</subject><subject>Tin</subject><subject>Tribology</subject><subject>Tungsten carbide</subject><subject>Ultrahigh vacuum</subject><issn>1023-8883</issn><issn>1573-2711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1OwzAQhCMEEqXwANwscTZ4bSdxjqhQQCoCqS1XyzjrJlWaFDs58PY4ChInTvujb2a1kyTXwG6BsfwuAHBZUMYULYTkFE6SGaS5oDwHOI0944IqpcR5chHCnrGoUuksse8eQxg8kgc8Yltia5F0jqwrNJ6se4_trq_CuNpUdUuWdXOIU0tesTcNWQ_eGYshjmZ0KUlktk3vTVXvKvJh7DAcLpMzZ5qAV791nmyXj5vFM129Pb0s7lfUCsh6mjLBXQ6F5JkrCymsAeMKUEymCiLCJUqQHNVnWjqJtshdGj8srXNZ6cpMzJObyffou68BQ6_33eDbeFJzrkDILAUZKZgo67sQPDp99PXB-G8NTI9Z6ilLHQPSY5YaooZPmhDZdof-z_l_0Q_fOXZe</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Gao, Feng</creator><creator>Furlong, Octavio</creator><creator>Kotvis, Peter V.</creator><creator>Tysoe, W. T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20080801</creationdate><title>Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum</title><author>Gao, Feng ; Furlong, Octavio ; Kotvis, Peter V. ; Tysoe, W. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5032f719426fd943ca1af91804581c3124e4142e8b5df4ec97f5573dcff6dfd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Asperity</topic><topic>Chemistry and Materials Science</topic><topic>Coefficient of friction</topic><topic>Coefficient of variation</topic><topic>Contact pressure</topic><topic>Copper</topic><topic>Corrosion and Coatings</topic><topic>Film thickness</topic><topic>Friction</topic><topic>Gold</topic><topic>Hardness</topic><topic>Iron</topic><topic>Lead</topic><topic>Materials Science</topic><topic>Metal surfaces</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Palladium</topic><topic>Physical Chemistry</topic><topic>Potassium chloride</topic><topic>Pressure dependence</topic><topic>Shear strength</topic><topic>Silver</topic><topic>Substrates</topic><topic>Surfaces and Interfaces</topic><topic>Tantalum</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thin Films</topic><topic>Tin</topic><topic>Tribology</topic><topic>Tungsten carbide</topic><topic>Ultrahigh vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Furlong, Octavio</creatorcontrib><creatorcontrib>Kotvis, Peter V.</creatorcontrib><creatorcontrib>Tysoe, W. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Tribology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Feng</au><au>Furlong, Octavio</au><au>Kotvis, Peter V.</au><au>Tysoe, W. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum</atitle><jtitle>Tribology letters</jtitle><stitle>Tribol Lett</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>31</volume><issue>2</issue><spage>99</spage><epage>106</epage><pages>99-106</pages><issn>1023-8883</issn><eissn>1573-2711</eissn><abstract>The friction coefficient is measured for systems consisting of a thin potassium chloride film deposited onto a variety of clean, flat metal substrates, namely Pb, Sn, Au, Ag, Cu, Pd, Fe, Ta, and two types of steel, which are rubbed by a tungsten carbide pin in an ultrahigh vacuum. The friction coefficients are plotted versus 1/
H
S
, the inverse of the substrate hardness, where two regimes are found. In the first regime, where deformation at the asperity tips is suggested to be plastic, the observed variation in friction coefficient with substrate hardness is rationalized by assuming that the shear strength
S
for sliding on a KCl film varies with contact pressure
P
as
S
=
S
0
+
aP
, yielding values for
a
of 0.14 ± 0.02 and
S
0
of ~60–70 MPa. In the second regime, it is proposed that the softer, film-covered Pb and Sn substrates are closer to being in conformal contact with the rough tribopin. These values of
S
0
and
a
, along with the measured surface asperity height distribution of the tribopin and the value of the friction coefficient for a KCl monolayer on the metal, are used to rationalize the observed increase in friction coefficient with increasing film thickness.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11249-008-9342-1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-8883 |
ispartof | Tribology letters, 2008-08, Vol.31 (2), p.99-106 |
issn | 1023-8883 1573-2711 |
language | eng |
recordid | cdi_proquest_journals_2281346514 |
source | SpringerLink Journals - AutoHoldings |
subjects | Asperity Chemistry and Materials Science Coefficient of friction Coefficient of variation Contact pressure Copper Corrosion and Coatings Film thickness Friction Gold Hardness Iron Lead Materials Science Metal surfaces Nanotechnology Original Paper Palladium Physical Chemistry Potassium chloride Pressure dependence Shear strength Silver Substrates Surfaces and Interfaces Tantalum Theoretical and Applied Mechanics Thin Films Tin Tribology Tungsten carbide Ultrahigh vacuum |
title | Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure%20Dependence%20of%20Shear%20Strengths%20of%20Thin%20Films%20on%20Metal%20Surfaces%20Measured%20in%20Ultrahigh%20Vacuum&rft.jtitle=Tribology%20letters&rft.au=Gao,%20Feng&rft.date=2008-08-01&rft.volume=31&rft.issue=2&rft.spage=99&rft.epage=106&rft.pages=99-106&rft.issn=1023-8883&rft.eissn=1573-2711&rft_id=info:doi/10.1007/s11249-008-9342-1&rft_dat=%3Cproquest_cross%3E2281346514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281346514&rft_id=info:pmid/&rfr_iscdi=true |