A Comparative Study of Residual Stress Distribution Induced by Hard Machining Versus Grinding
This study investigates the residual stress distribution induced by hard machining and grinding and compares its impact on fatigue parameters. The residual stress distribution below hard turned and ground surfaces is investigated after a thermally damaged layer is removed. Fatigue parameters are com...
Gespeichert in:
Veröffentlicht in: | Tribology letters 2009-12, Vol.36 (3), p.277-284 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 284 |
---|---|
container_issue | 3 |
container_start_page | 277 |
container_title | Tribology letters |
container_volume | 36 |
creator | Choi, Youngsik |
description | This study investigates the residual stress distribution induced by hard machining and grinding and compares its impact on fatigue parameters. The residual stress distribution below hard turned and ground surfaces is investigated after a thermally damaged layer is removed. Fatigue parameters are computed based on the residual stress distribution to compare the impact of the residual stress distribution on the fatigue performance. Rolling contact fatigue tests are then performed to substantiate the computations. The effect of residual stresses on crack initiation depth is shown to be significant for the ground specimen. The maximum shear stress at crack initiation depth of the hard turned specimen is smaller than that of the ground specimen. Due to a significant increase in crack initiation life, the predicted rolling contact fatigue life of the hard turned specimen is longer than that of the ground specimen. The overall average in the ratios of predicted life to experimental life for the hard turned specimen is closer to 1 than that for the ground specimen. The results demonstrate that the hard turned specimen shows better rolling contact fatigue performance and better accuracy in the fatigue life prediction. |
doi_str_mv | 10.1007/s11249-009-9512-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2281346445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281346445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-bd04b3b29005e8ec4a3498f4c428d6fe53acdef7bc4f643063d2eb14e8fd70893</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gOprbdDLLUrUtVARvOwmZ5KSm1JmazAh9e1NGcOXqXPgv8CF0yeg1o7S8SYxxWRFKK1IVjJPqCI1YUQrCS8aO8065IEopcYrOUtpQml2qGKH3KZ61nzsTTRe-AT93vdvj1uMnSMH1Zps_EVLCtyF1MdR9F9oGLxvXW3C43uOFiQ4_GPsRmtCs8RvE1Cc8j6Fx-T5HJ95sE1z8zjF6vb97mS3I6nG-nE1XxArFO1I7KmtR84rSAhRYaYSslJdWcuUmHgphrANf1lb6iRR0IhyHmklQ3pVUVWKMrobcXWy_ekid3rR9bHKl5lwxISdSFlnFBpWNbUoRvN7F8GniXjOqDxT1QFFnivpAUR-S-eBJWdusIf4l_2_6AaJPdU4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281346445</pqid></control><display><type>article</type><title>A Comparative Study of Residual Stress Distribution Induced by Hard Machining Versus Grinding</title><source>SpringerNature Journals</source><creator>Choi, Youngsik</creator><creatorcontrib>Choi, Youngsik</creatorcontrib><description>This study investigates the residual stress distribution induced by hard machining and grinding and compares its impact on fatigue parameters. The residual stress distribution below hard turned and ground surfaces is investigated after a thermally damaged layer is removed. Fatigue parameters are computed based on the residual stress distribution to compare the impact of the residual stress distribution on the fatigue performance. Rolling contact fatigue tests are then performed to substantiate the computations. The effect of residual stresses on crack initiation depth is shown to be significant for the ground specimen. The maximum shear stress at crack initiation depth of the hard turned specimen is smaller than that of the ground specimen. Due to a significant increase in crack initiation life, the predicted rolling contact fatigue life of the hard turned specimen is longer than that of the ground specimen. The overall average in the ratios of predicted life to experimental life for the hard turned specimen is closer to 1 than that for the ground specimen. The results demonstrate that the hard turned specimen shows better rolling contact fatigue performance and better accuracy in the fatigue life prediction.</description><identifier>ISSN: 1023-8883</identifier><identifier>EISSN: 1573-2711</identifier><identifier>DOI: 10.1007/s11249-009-9512-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Chemistry and Materials Science ; Comparative studies ; Contact stresses ; Corrosion and Coatings ; Crack initiation ; Crack propagation ; Fatigue failure ; Fatigue life ; Fatigue tests ; Fracture mechanics ; Grinding ; Life prediction ; Machining ; Materials Science ; Nanotechnology ; Original Paper ; Parameters ; Physical Chemistry ; Residual stress ; Rolling contact ; Shear stress ; Stress concentration ; Stress distribution ; Surfaces and Interfaces ; Theoretical and Applied Mechanics ; Thin Films ; Tribology ; Ultrasonic testing</subject><ispartof>Tribology letters, 2009-12, Vol.36 (3), p.277-284</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Tribology Letters is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-bd04b3b29005e8ec4a3498f4c428d6fe53acdef7bc4f643063d2eb14e8fd70893</citedby><cites>FETCH-LOGICAL-c382t-bd04b3b29005e8ec4a3498f4c428d6fe53acdef7bc4f643063d2eb14e8fd70893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11249-009-9512-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11249-009-9512-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Choi, Youngsik</creatorcontrib><title>A Comparative Study of Residual Stress Distribution Induced by Hard Machining Versus Grinding</title><title>Tribology letters</title><addtitle>Tribol Lett</addtitle><description>This study investigates the residual stress distribution induced by hard machining and grinding and compares its impact on fatigue parameters. The residual stress distribution below hard turned and ground surfaces is investigated after a thermally damaged layer is removed. Fatigue parameters are computed based on the residual stress distribution to compare the impact of the residual stress distribution on the fatigue performance. Rolling contact fatigue tests are then performed to substantiate the computations. The effect of residual stresses on crack initiation depth is shown to be significant for the ground specimen. The maximum shear stress at crack initiation depth of the hard turned specimen is smaller than that of the ground specimen. Due to a significant increase in crack initiation life, the predicted rolling contact fatigue life of the hard turned specimen is longer than that of the ground specimen. The overall average in the ratios of predicted life to experimental life for the hard turned specimen is closer to 1 than that for the ground specimen. The results demonstrate that the hard turned specimen shows better rolling contact fatigue performance and better accuracy in the fatigue life prediction.</description><subject>Chemistry and Materials Science</subject><subject>Comparative studies</subject><subject>Contact stresses</subject><subject>Corrosion and Coatings</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Grinding</subject><subject>Life prediction</subject><subject>Machining</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Residual stress</subject><subject>Rolling contact</subject><subject>Shear stress</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Surfaces and Interfaces</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Ultrasonic testing</subject><issn>1023-8883</issn><issn>1573-2711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMtKAzEUhoMoWKsP4C7gOprbdDLLUrUtVARvOwmZ5KSm1JmazAh9e1NGcOXqXPgv8CF0yeg1o7S8SYxxWRFKK1IVjJPqCI1YUQrCS8aO8065IEopcYrOUtpQml2qGKH3KZ61nzsTTRe-AT93vdvj1uMnSMH1Zps_EVLCtyF1MdR9F9oGLxvXW3C43uOFiQ4_GPsRmtCs8RvE1Cc8j6Fx-T5HJ95sE1z8zjF6vb97mS3I6nG-nE1XxArFO1I7KmtR84rSAhRYaYSslJdWcuUmHgphrANf1lb6iRR0IhyHmklQ3pVUVWKMrobcXWy_ekid3rR9bHKl5lwxISdSFlnFBpWNbUoRvN7F8GniXjOqDxT1QFFnivpAUR-S-eBJWdusIf4l_2_6AaJPdU4</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Choi, Youngsik</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20091201</creationdate><title>A Comparative Study of Residual Stress Distribution Induced by Hard Machining Versus Grinding</title><author>Choi, Youngsik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-bd04b3b29005e8ec4a3498f4c428d6fe53acdef7bc4f643063d2eb14e8fd70893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chemistry and Materials Science</topic><topic>Comparative studies</topic><topic>Contact stresses</topic><topic>Corrosion and Coatings</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Grinding</topic><topic>Life prediction</topic><topic>Machining</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Residual stress</topic><topic>Rolling contact</topic><topic>Shear stress</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Surfaces and Interfaces</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Ultrasonic testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Youngsik</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Tribology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Youngsik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparative Study of Residual Stress Distribution Induced by Hard Machining Versus Grinding</atitle><jtitle>Tribology letters</jtitle><stitle>Tribol Lett</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>36</volume><issue>3</issue><spage>277</spage><epage>284</epage><pages>277-284</pages><issn>1023-8883</issn><eissn>1573-2711</eissn><abstract>This study investigates the residual stress distribution induced by hard machining and grinding and compares its impact on fatigue parameters. The residual stress distribution below hard turned and ground surfaces is investigated after a thermally damaged layer is removed. Fatigue parameters are computed based on the residual stress distribution to compare the impact of the residual stress distribution on the fatigue performance. Rolling contact fatigue tests are then performed to substantiate the computations. The effect of residual stresses on crack initiation depth is shown to be significant for the ground specimen. The maximum shear stress at crack initiation depth of the hard turned specimen is smaller than that of the ground specimen. Due to a significant increase in crack initiation life, the predicted rolling contact fatigue life of the hard turned specimen is longer than that of the ground specimen. The overall average in the ratios of predicted life to experimental life for the hard turned specimen is closer to 1 than that for the ground specimen. The results demonstrate that the hard turned specimen shows better rolling contact fatigue performance and better accuracy in the fatigue life prediction.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11249-009-9512-9</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-8883 |
ispartof | Tribology letters, 2009-12, Vol.36 (3), p.277-284 |
issn | 1023-8883 1573-2711 |
language | eng |
recordid | cdi_proquest_journals_2281346445 |
source | SpringerNature Journals |
subjects | Chemistry and Materials Science Comparative studies Contact stresses Corrosion and Coatings Crack initiation Crack propagation Fatigue failure Fatigue life Fatigue tests Fracture mechanics Grinding Life prediction Machining Materials Science Nanotechnology Original Paper Parameters Physical Chemistry Residual stress Rolling contact Shear stress Stress concentration Stress distribution Surfaces and Interfaces Theoretical and Applied Mechanics Thin Films Tribology Ultrasonic testing |
title | A Comparative Study of Residual Stress Distribution Induced by Hard Machining Versus Grinding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparative%20Study%20of%20Residual%20Stress%20Distribution%20Induced%20by%20Hard%20Machining%20Versus%20Grinding&rft.jtitle=Tribology%20letters&rft.au=Choi,%20Youngsik&rft.date=2009-12-01&rft.volume=36&rft.issue=3&rft.spage=277&rft.epage=284&rft.pages=277-284&rft.issn=1023-8883&rft.eissn=1573-2711&rft_id=info:doi/10.1007/s11249-009-9512-9&rft_dat=%3Cproquest_cross%3E2281346445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281346445&rft_id=info:pmid/&rfr_iscdi=true |