Scratch Resistance of New Polystyrene Nanocomposites with Ionic Liquid-Modified Multi-walled Carbon Nanotubes

Multi-walled carbon nanotubes, both neat (MWCNT) and modified (MWCNTm) by the room-temperature ionic liquid (IL) 1-octyl-3-methylimidazolium tetrafluoroborate ([OMIM]BF 4 ), were added in a 1 wt% to polystyrene (PS) to obtain the new nanocomposites (PS + MWCNT and PS + MWCNTm). Friction coefficients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tribology letters 2013-11, Vol.52 (2), p.271-285
Hauptverfasser: Espejo, C., Carrión, F. J., Bermúdez, M. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285
container_issue 2
container_start_page 271
container_title Tribology letters
container_volume 52
creator Espejo, C.
Carrión, F. J.
Bermúdez, M. D.
description Multi-walled carbon nanotubes, both neat (MWCNT) and modified (MWCNTm) by the room-temperature ionic liquid (IL) 1-octyl-3-methylimidazolium tetrafluoroborate ([OMIM]BF 4 ), were added in a 1 wt% to polystyrene (PS) to obtain the new nanocomposites (PS + MWCNT and PS + MWCNTm). Friction coefficients and abrasive wear from instantaneous penetration depth, residual depth and viscoelastic recovery were determined for compression-moulded materials as a function of applied normal load and of the number of successive scratches. The new nanocomposites improve the abrasion resistance of neat PS and of the analogous PS nanocomposites containing neat and IL-modified single-walled carbon nanotubes. The lowest friction coefficient and residual depth values, after 15 scratches, under the whole range of applied loads are obtained for PS + MWCNTm, with maximum reduction under the most severe conditions. The influence of sliding direction with respect to flow was studied for injection-moulded PS + MWCNTm under multiple scratching. The most severe surface damage is observed in the transverse direction to injection flow, while the lowest friction coefficient and the highest abrasion resistance and viscoelastic recovery values are obtained in the direction parallel to injection flow, due to the higher mobility of the polymer chains and the additives. Thermal analysis (DSC and TGA), Raman spectroscopy, transmission electron microscopy, X-ray diffraction and XPS surface analysis have been used as characterization techniques. XPS shows that the IL molecules are present on the nanotube surface. According to TGA, the IL content in MWCNTm can be estimated to be of a 12 wt%. Mechanisms of surface damage are discussed upon scanning electron microscopy, 3-D surface topography, surface roughness and profilometry observations.
doi_str_mv 10.1007/s11249-013-0212-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2281328559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281328559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-40f13a15f2c2b927e5266f8c2837f8074746156ed30bc746df4e71a4cd59266e3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhgdRsFYfwF3AdTQnmUu6lOKl0Fbxsg6ZTGJTppM2yVD69qaO4MrV-Q983znwZ9k1kFsgpLoLADSfYAIMEwoUk5NsBEXFMK0ATlMmlGHOOTvPLkJYE5IsXoyyzbvyMqoVetPBhig7pZEzaKn36NW1hxAPXncaLWXnlNtsXbBRB7S3cYVmrrMKze2utw1euMYaqxu06Nto8V62bVqm0teu-7FjX-twmZ0Z2QZ99TvH2efjw8f0Gc9fnmbT-zlWDMqIc2KASSgMVbSe0EoXtCwNV5SzynBS5VVeQlHqhpFapdyYXFcgc9UUk0RqNs5uhrtb73a9DlGsXe-79FJQyoFRXhSTRMFAKe9C8NqIrbcb6Q8CiDi2KoZWRWpVHFsVJDl0cEJiuy_t_y7_L30DN4l6Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281328559</pqid></control><display><type>article</type><title>Scratch Resistance of New Polystyrene Nanocomposites with Ionic Liquid-Modified Multi-walled Carbon Nanotubes</title><source>SpringerLink Journals (MCLS)</source><creator>Espejo, C. ; Carrión, F. J. ; Bermúdez, M. D.</creator><creatorcontrib>Espejo, C. ; Carrión, F. J. ; Bermúdez, M. D.</creatorcontrib><description>Multi-walled carbon nanotubes, both neat (MWCNT) and modified (MWCNTm) by the room-temperature ionic liquid (IL) 1-octyl-3-methylimidazolium tetrafluoroborate ([OMIM]BF 4 ), were added in a 1 wt% to polystyrene (PS) to obtain the new nanocomposites (PS + MWCNT and PS + MWCNTm). Friction coefficients and abrasive wear from instantaneous penetration depth, residual depth and viscoelastic recovery were determined for compression-moulded materials as a function of applied normal load and of the number of successive scratches. The new nanocomposites improve the abrasion resistance of neat PS and of the analogous PS nanocomposites containing neat and IL-modified single-walled carbon nanotubes. The lowest friction coefficient and residual depth values, after 15 scratches, under the whole range of applied loads are obtained for PS + MWCNTm, with maximum reduction under the most severe conditions. The influence of sliding direction with respect to flow was studied for injection-moulded PS + MWCNTm under multiple scratching. The most severe surface damage is observed in the transverse direction to injection flow, while the lowest friction coefficient and the highest abrasion resistance and viscoelastic recovery values are obtained in the direction parallel to injection flow, due to the higher mobility of the polymer chains and the additives. Thermal analysis (DSC and TGA), Raman spectroscopy, transmission electron microscopy, X-ray diffraction and XPS surface analysis have been used as characterization techniques. XPS shows that the IL molecules are present on the nanotube surface. According to TGA, the IL content in MWCNTm can be estimated to be of a 12 wt%. Mechanisms of surface damage are discussed upon scanning electron microscopy, 3-D surface topography, surface roughness and profilometry observations.</description><identifier>ISSN: 1023-8883</identifier><identifier>EISSN: 1573-2711</identifier><identifier>DOI: 10.1007/s11249-013-0212-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Abrasion resistance ; Abrasive wear ; Additives ; Carbon ; Chemistry and Materials Science ; Coefficient of friction ; Corrosion and Coatings ; Electron microscopy ; Friction ; Friction resistance ; Injection molding ; Ionic liquids ; Ions ; Materials Science ; Microscopy ; Multi wall carbon nanotubes ; Nanocomposites ; Nanotechnology ; Original Paper ; Penetration depth ; Physical Chemistry ; Polystyrene resins ; Raman spectroscopy ; Recovery ; Scratch resistance ; Scratching ; Single wall carbon nanotubes ; Surface analysis (chemical) ; Surface roughness ; Surfaces and Interfaces ; Theoretical and Applied Mechanics ; Thermal analysis ; Thin Films ; Tribology ; Viscoelasticity ; X ray photoelectron spectroscopy</subject><ispartof>Tribology letters, 2013-11, Vol.52 (2), p.271-285</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Tribology Letters is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-40f13a15f2c2b927e5266f8c2837f8074746156ed30bc746df4e71a4cd59266e3</citedby><cites>FETCH-LOGICAL-c316t-40f13a15f2c2b927e5266f8c2837f8074746156ed30bc746df4e71a4cd59266e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11249-013-0212-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11249-013-0212-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Espejo, C.</creatorcontrib><creatorcontrib>Carrión, F. J.</creatorcontrib><creatorcontrib>Bermúdez, M. D.</creatorcontrib><title>Scratch Resistance of New Polystyrene Nanocomposites with Ionic Liquid-Modified Multi-walled Carbon Nanotubes</title><title>Tribology letters</title><addtitle>Tribol Lett</addtitle><description>Multi-walled carbon nanotubes, both neat (MWCNT) and modified (MWCNTm) by the room-temperature ionic liquid (IL) 1-octyl-3-methylimidazolium tetrafluoroborate ([OMIM]BF 4 ), were added in a 1 wt% to polystyrene (PS) to obtain the new nanocomposites (PS + MWCNT and PS + MWCNTm). Friction coefficients and abrasive wear from instantaneous penetration depth, residual depth and viscoelastic recovery were determined for compression-moulded materials as a function of applied normal load and of the number of successive scratches. The new nanocomposites improve the abrasion resistance of neat PS and of the analogous PS nanocomposites containing neat and IL-modified single-walled carbon nanotubes. The lowest friction coefficient and residual depth values, after 15 scratches, under the whole range of applied loads are obtained for PS + MWCNTm, with maximum reduction under the most severe conditions. The influence of sliding direction with respect to flow was studied for injection-moulded PS + MWCNTm under multiple scratching. The most severe surface damage is observed in the transverse direction to injection flow, while the lowest friction coefficient and the highest abrasion resistance and viscoelastic recovery values are obtained in the direction parallel to injection flow, due to the higher mobility of the polymer chains and the additives. Thermal analysis (DSC and TGA), Raman spectroscopy, transmission electron microscopy, X-ray diffraction and XPS surface analysis have been used as characterization techniques. XPS shows that the IL molecules are present on the nanotube surface. According to TGA, the IL content in MWCNTm can be estimated to be of a 12 wt%. Mechanisms of surface damage are discussed upon scanning electron microscopy, 3-D surface topography, surface roughness and profilometry observations.</description><subject>Abrasion resistance</subject><subject>Abrasive wear</subject><subject>Additives</subject><subject>Carbon</subject><subject>Chemistry and Materials Science</subject><subject>Coefficient of friction</subject><subject>Corrosion and Coatings</subject><subject>Electron microscopy</subject><subject>Friction</subject><subject>Friction resistance</subject><subject>Injection molding</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Penetration depth</subject><subject>Physical Chemistry</subject><subject>Polystyrene resins</subject><subject>Raman spectroscopy</subject><subject>Recovery</subject><subject>Scratch resistance</subject><subject>Scratching</subject><subject>Single wall carbon nanotubes</subject><subject>Surface analysis (chemical)</subject><subject>Surface roughness</subject><subject>Surfaces and Interfaces</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermal analysis</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Viscoelasticity</subject><subject>X ray photoelectron spectroscopy</subject><issn>1023-8883</issn><issn>1573-2711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKAzEUhgdRsFYfwF3AdTQnmUu6lOKl0Fbxsg6ZTGJTppM2yVD69qaO4MrV-Q983znwZ9k1kFsgpLoLADSfYAIMEwoUk5NsBEXFMK0ATlMmlGHOOTvPLkJYE5IsXoyyzbvyMqoVetPBhig7pZEzaKn36NW1hxAPXncaLWXnlNtsXbBRB7S3cYVmrrMKze2utw1euMYaqxu06Nto8V62bVqm0teu-7FjX-twmZ0Z2QZ99TvH2efjw8f0Gc9fnmbT-zlWDMqIc2KASSgMVbSe0EoXtCwNV5SzynBS5VVeQlHqhpFapdyYXFcgc9UUk0RqNs5uhrtb73a9DlGsXe-79FJQyoFRXhSTRMFAKe9C8NqIrbcb6Q8CiDi2KoZWRWpVHFsVJDl0cEJiuy_t_y7_L30DN4l6Vw</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Espejo, C.</creator><creator>Carrión, F. J.</creator><creator>Bermúdez, M. D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20131101</creationdate><title>Scratch Resistance of New Polystyrene Nanocomposites with Ionic Liquid-Modified Multi-walled Carbon Nanotubes</title><author>Espejo, C. ; Carrión, F. J. ; Bermúdez, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-40f13a15f2c2b927e5266f8c2837f8074746156ed30bc746df4e71a4cd59266e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abrasion resistance</topic><topic>Abrasive wear</topic><topic>Additives</topic><topic>Carbon</topic><topic>Chemistry and Materials Science</topic><topic>Coefficient of friction</topic><topic>Corrosion and Coatings</topic><topic>Electron microscopy</topic><topic>Friction</topic><topic>Friction resistance</topic><topic>Injection molding</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Penetration depth</topic><topic>Physical Chemistry</topic><topic>Polystyrene resins</topic><topic>Raman spectroscopy</topic><topic>Recovery</topic><topic>Scratch resistance</topic><topic>Scratching</topic><topic>Single wall carbon nanotubes</topic><topic>Surface analysis (chemical)</topic><topic>Surface roughness</topic><topic>Surfaces and Interfaces</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermal analysis</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Viscoelasticity</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espejo, C.</creatorcontrib><creatorcontrib>Carrión, F. J.</creatorcontrib><creatorcontrib>Bermúdez, M. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Tribology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espejo, C.</au><au>Carrión, F. J.</au><au>Bermúdez, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scratch Resistance of New Polystyrene Nanocomposites with Ionic Liquid-Modified Multi-walled Carbon Nanotubes</atitle><jtitle>Tribology letters</jtitle><stitle>Tribol Lett</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>52</volume><issue>2</issue><spage>271</spage><epage>285</epage><pages>271-285</pages><issn>1023-8883</issn><eissn>1573-2711</eissn><abstract>Multi-walled carbon nanotubes, both neat (MWCNT) and modified (MWCNTm) by the room-temperature ionic liquid (IL) 1-octyl-3-methylimidazolium tetrafluoroborate ([OMIM]BF 4 ), were added in a 1 wt% to polystyrene (PS) to obtain the new nanocomposites (PS + MWCNT and PS + MWCNTm). Friction coefficients and abrasive wear from instantaneous penetration depth, residual depth and viscoelastic recovery were determined for compression-moulded materials as a function of applied normal load and of the number of successive scratches. The new nanocomposites improve the abrasion resistance of neat PS and of the analogous PS nanocomposites containing neat and IL-modified single-walled carbon nanotubes. The lowest friction coefficient and residual depth values, after 15 scratches, under the whole range of applied loads are obtained for PS + MWCNTm, with maximum reduction under the most severe conditions. The influence of sliding direction with respect to flow was studied for injection-moulded PS + MWCNTm under multiple scratching. The most severe surface damage is observed in the transverse direction to injection flow, while the lowest friction coefficient and the highest abrasion resistance and viscoelastic recovery values are obtained in the direction parallel to injection flow, due to the higher mobility of the polymer chains and the additives. Thermal analysis (DSC and TGA), Raman spectroscopy, transmission electron microscopy, X-ray diffraction and XPS surface analysis have been used as characterization techniques. XPS shows that the IL molecules are present on the nanotube surface. According to TGA, the IL content in MWCNTm can be estimated to be of a 12 wt%. Mechanisms of surface damage are discussed upon scanning electron microscopy, 3-D surface topography, surface roughness and profilometry observations.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11249-013-0212-0</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1023-8883
ispartof Tribology letters, 2013-11, Vol.52 (2), p.271-285
issn 1023-8883
1573-2711
language eng
recordid cdi_proquest_journals_2281328559
source SpringerLink Journals (MCLS)
subjects Abrasion resistance
Abrasive wear
Additives
Carbon
Chemistry and Materials Science
Coefficient of friction
Corrosion and Coatings
Electron microscopy
Friction
Friction resistance
Injection molding
Ionic liquids
Ions
Materials Science
Microscopy
Multi wall carbon nanotubes
Nanocomposites
Nanotechnology
Original Paper
Penetration depth
Physical Chemistry
Polystyrene resins
Raman spectroscopy
Recovery
Scratch resistance
Scratching
Single wall carbon nanotubes
Surface analysis (chemical)
Surface roughness
Surfaces and Interfaces
Theoretical and Applied Mechanics
Thermal analysis
Thin Films
Tribology
Viscoelasticity
X ray photoelectron spectroscopy
title Scratch Resistance of New Polystyrene Nanocomposites with Ionic Liquid-Modified Multi-walled Carbon Nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scratch%20Resistance%20of%20New%20Polystyrene%20Nanocomposites%20with%20Ionic%20Liquid-Modified%20Multi-walled%20Carbon%20Nanotubes&rft.jtitle=Tribology%20letters&rft.au=Espejo,%20C.&rft.date=2013-11-01&rft.volume=52&rft.issue=2&rft.spage=271&rft.epage=285&rft.pages=271-285&rft.issn=1023-8883&rft.eissn=1573-2711&rft_id=info:doi/10.1007/s11249-013-0212-0&rft_dat=%3Cproquest_cross%3E2281328559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281328559&rft_id=info:pmid/&rfr_iscdi=true