Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites
More durable, low-friction self-lubricating materials in modern industry are greatly needed for tribological systems. The current paper presents the tribological performance of TiAl matrix self-lubricating composites (TSC) containing MoS 2 , hexagonal BN and Ti 3 SiC 2 designated as MhT against GCr1...
Gespeichert in:
Veröffentlicht in: | Tribology letters 2014-09, Vol.55 (3), p.393-404 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 404 |
---|---|
container_issue | 3 |
container_start_page | 393 |
container_title | Tribology letters |
container_volume | 55 |
creator | Xu, Zengshi Shi, Xiaoliang Zhang, Qiaoxin Zhai, Wenzheng Li, Xixing Yao, Jie Chen, Long Zhu, Qingshuai Xiaov, Yecheng |
description | More durable, low-friction self-lubricating materials in modern industry are greatly needed for tribological systems. The current paper presents the tribological performance of TiAl matrix self-lubricating composites (TSC) containing MoS
2
, hexagonal BN and Ti
3
SiC
2
designated as MhT against GCr15 steel counterface under several sliding speeds from 0.2 to 0.8 m s
−1
and applied loads from 6 to 12 N. The results suggested that MhT played an important role in decreasing friction coefficients and wear rates. The covering percentage of transfer layers on worn surfaces varied with the changing of sliding speeds and applied loads, hence resulting in the distinct friction and wear characteristics of TSC. TSC containing 10 wt% MhT exhibited the best excellent tribological performance at 10 N–0.8 m s
−1
, which could be due to the formation of the best compaction and largest coverage of transfer layer on the worn surfaces. |
doi_str_mv | 10.1007/s11249-014-0367-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2281323280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281323280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-b8957712bd143d1675abe1fe59dc9bc89b444fedeeb5737894ba2c964b406383</originalsourceid><addsrcrecordid>eNp1kE1LAzEURQdRsFZ_gLuA62i-ZpJZllo_oKLQ2YdkJikp6WRMpqD4581Q0ZWr9xbn3Me7RXGN0S1GiN8ljAmrIcIMIlpxSE-KGS45hYRjfJp3RCgUQtDz4iKlHULZEuWs-FpZa9oRBAs23nWu34LNYEwHVN-BxTB4l_d1UB0IPbiPn79UE50OPmxdqzx4M9GGuFd9a6akxi08eFFjdB9gY7yF_qBjBsdJXIb9EJIbTboszqzyyVz9zHnRPKya5RNcvz4-Lxdr2LKSjFCLuuQcE91hRjtc8VJpg60p666tdStqzRizpjNG54e5qJlWpK0rphmqqKDz4uYYO8TwfjBplLtwiH2-KAkRmBJKBMoUPlJtDClFY-UQ3V7FT4mRnCqWx4plrlhOFUuaHXJ0Umb7rYl_yf9L36TMfuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281323280</pqid></control><display><type>article</type><title>Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, Zengshi ; Shi, Xiaoliang ; Zhang, Qiaoxin ; Zhai, Wenzheng ; Li, Xixing ; Yao, Jie ; Chen, Long ; Zhu, Qingshuai ; Xiaov, Yecheng</creator><creatorcontrib>Xu, Zengshi ; Shi, Xiaoliang ; Zhang, Qiaoxin ; Zhai, Wenzheng ; Li, Xixing ; Yao, Jie ; Chen, Long ; Zhu, Qingshuai ; Xiaov, Yecheng</creatorcontrib><description>More durable, low-friction self-lubricating materials in modern industry are greatly needed for tribological systems. The current paper presents the tribological performance of TiAl matrix self-lubricating composites (TSC) containing MoS
2
, hexagonal BN and Ti
3
SiC
2
designated as MhT against GCr15 steel counterface under several sliding speeds from 0.2 to 0.8 m s
−1
and applied loads from 6 to 12 N. The results suggested that MhT played an important role in decreasing friction coefficients and wear rates. The covering percentage of transfer layers on worn surfaces varied with the changing of sliding speeds and applied loads, hence resulting in the distinct friction and wear characteristics of TSC. TSC containing 10 wt% MhT exhibited the best excellent tribological performance at 10 N–0.8 m s
−1
, which could be due to the formation of the best compaction and largest coverage of transfer layer on the worn surfaces.</description><identifier>ISSN: 1023-8883</identifier><identifier>EISSN: 1573-2711</identifier><identifier>DOI: 10.1007/s11249-014-0367-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Chemistry and Materials Science ; Coefficient of friction ; Composite materials ; Corrosion and Coatings ; Friction ; Intermetallic compounds ; Lubrication ; Materials Science ; Molybdenum disulfide ; Nanotechnology ; Original Paper ; Physical Chemistry ; Self lubrication ; Sliding ; Surfaces and Interfaces ; Theoretical and Applied Mechanics ; Thin Films ; Titanium aluminides ; Titanium silicon carbide ; Tribology ; Wear rate</subject><ispartof>Tribology letters, 2014-09, Vol.55 (3), p.393-404</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Tribology Letters is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-b8957712bd143d1675abe1fe59dc9bc89b444fedeeb5737894ba2c964b406383</citedby><cites>FETCH-LOGICAL-c452t-b8957712bd143d1675abe1fe59dc9bc89b444fedeeb5737894ba2c964b406383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11249-014-0367-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11249-014-0367-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Zengshi</creatorcontrib><creatorcontrib>Shi, Xiaoliang</creatorcontrib><creatorcontrib>Zhang, Qiaoxin</creatorcontrib><creatorcontrib>Zhai, Wenzheng</creatorcontrib><creatorcontrib>Li, Xixing</creatorcontrib><creatorcontrib>Yao, Jie</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Zhu, Qingshuai</creatorcontrib><creatorcontrib>Xiaov, Yecheng</creatorcontrib><title>Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites</title><title>Tribology letters</title><addtitle>Tribol Lett</addtitle><description>More durable, low-friction self-lubricating materials in modern industry are greatly needed for tribological systems. The current paper presents the tribological performance of TiAl matrix self-lubricating composites (TSC) containing MoS
2
, hexagonal BN and Ti
3
SiC
2
designated as MhT against GCr15 steel counterface under several sliding speeds from 0.2 to 0.8 m s
−1
and applied loads from 6 to 12 N. The results suggested that MhT played an important role in decreasing friction coefficients and wear rates. The covering percentage of transfer layers on worn surfaces varied with the changing of sliding speeds and applied loads, hence resulting in the distinct friction and wear characteristics of TSC. TSC containing 10 wt% MhT exhibited the best excellent tribological performance at 10 N–0.8 m s
−1
, which could be due to the formation of the best compaction and largest coverage of transfer layer on the worn surfaces.</description><subject>Chemistry and Materials Science</subject><subject>Coefficient of friction</subject><subject>Composite materials</subject><subject>Corrosion and Coatings</subject><subject>Friction</subject><subject>Intermetallic compounds</subject><subject>Lubrication</subject><subject>Materials Science</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Self lubrication</subject><subject>Sliding</subject><subject>Surfaces and Interfaces</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thin Films</subject><subject>Titanium aluminides</subject><subject>Titanium silicon carbide</subject><subject>Tribology</subject><subject>Wear rate</subject><issn>1023-8883</issn><issn>1573-2711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEURQdRsFZ_gLuA62i-ZpJZllo_oKLQ2YdkJikp6WRMpqD4581Q0ZWr9xbn3Me7RXGN0S1GiN8ljAmrIcIMIlpxSE-KGS45hYRjfJp3RCgUQtDz4iKlHULZEuWs-FpZa9oRBAs23nWu34LNYEwHVN-BxTB4l_d1UB0IPbiPn79UE50OPmxdqzx4M9GGuFd9a6akxi08eFFjdB9gY7yF_qBjBsdJXIb9EJIbTboszqzyyVz9zHnRPKya5RNcvz4-Lxdr2LKSjFCLuuQcE91hRjtc8VJpg60p666tdStqzRizpjNG54e5qJlWpK0rphmqqKDz4uYYO8TwfjBplLtwiH2-KAkRmBJKBMoUPlJtDClFY-UQ3V7FT4mRnCqWx4plrlhOFUuaHXJ0Umb7rYl_yf9L36TMfuM</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Xu, Zengshi</creator><creator>Shi, Xiaoliang</creator><creator>Zhang, Qiaoxin</creator><creator>Zhai, Wenzheng</creator><creator>Li, Xixing</creator><creator>Yao, Jie</creator><creator>Chen, Long</creator><creator>Zhu, Qingshuai</creator><creator>Xiaov, Yecheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140901</creationdate><title>Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites</title><author>Xu, Zengshi ; Shi, Xiaoliang ; Zhang, Qiaoxin ; Zhai, Wenzheng ; Li, Xixing ; Yao, Jie ; Chen, Long ; Zhu, Qingshuai ; Xiaov, Yecheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-b8957712bd143d1675abe1fe59dc9bc89b444fedeeb5737894ba2c964b406383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemistry and Materials Science</topic><topic>Coefficient of friction</topic><topic>Composite materials</topic><topic>Corrosion and Coatings</topic><topic>Friction</topic><topic>Intermetallic compounds</topic><topic>Lubrication</topic><topic>Materials Science</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Self lubrication</topic><topic>Sliding</topic><topic>Surfaces and Interfaces</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thin Films</topic><topic>Titanium aluminides</topic><topic>Titanium silicon carbide</topic><topic>Tribology</topic><topic>Wear rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zengshi</creatorcontrib><creatorcontrib>Shi, Xiaoliang</creatorcontrib><creatorcontrib>Zhang, Qiaoxin</creatorcontrib><creatorcontrib>Zhai, Wenzheng</creatorcontrib><creatorcontrib>Li, Xixing</creatorcontrib><creatorcontrib>Yao, Jie</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Zhu, Qingshuai</creatorcontrib><creatorcontrib>Xiaov, Yecheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Tribology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zengshi</au><au>Shi, Xiaoliang</au><au>Zhang, Qiaoxin</au><au>Zhai, Wenzheng</au><au>Li, Xixing</au><au>Yao, Jie</au><au>Chen, Long</au><au>Zhu, Qingshuai</au><au>Xiaov, Yecheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites</atitle><jtitle>Tribology letters</jtitle><stitle>Tribol Lett</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>55</volume><issue>3</issue><spage>393</spage><epage>404</epage><pages>393-404</pages><issn>1023-8883</issn><eissn>1573-2711</eissn><abstract>More durable, low-friction self-lubricating materials in modern industry are greatly needed for tribological systems. The current paper presents the tribological performance of TiAl matrix self-lubricating composites (TSC) containing MoS
2
, hexagonal BN and Ti
3
SiC
2
designated as MhT against GCr15 steel counterface under several sliding speeds from 0.2 to 0.8 m s
−1
and applied loads from 6 to 12 N. The results suggested that MhT played an important role in decreasing friction coefficients and wear rates. The covering percentage of transfer layers on worn surfaces varied with the changing of sliding speeds and applied loads, hence resulting in the distinct friction and wear characteristics of TSC. TSC containing 10 wt% MhT exhibited the best excellent tribological performance at 10 N–0.8 m s
−1
, which could be due to the formation of the best compaction and largest coverage of transfer layer on the worn surfaces.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11249-014-0367-3</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-8883 |
ispartof | Tribology letters, 2014-09, Vol.55 (3), p.393-404 |
issn | 1023-8883 1573-2711 |
language | eng |
recordid | cdi_proquest_journals_2281323280 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chemistry and Materials Science Coefficient of friction Composite materials Corrosion and Coatings Friction Intermetallic compounds Lubrication Materials Science Molybdenum disulfide Nanotechnology Original Paper Physical Chemistry Self lubrication Sliding Surfaces and Interfaces Theoretical and Applied Mechanics Thin Films Titanium aluminides Titanium silicon carbide Tribology Wear rate |
title | Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Sliding%20Speed%20and%20Applied%20Load%20on%20Dry%20Sliding%20Tribological%20Performance%20of%20TiAl%20Matrix%20Self-lubricating%20Composites&rft.jtitle=Tribology%20letters&rft.au=Xu,%20Zengshi&rft.date=2014-09-01&rft.volume=55&rft.issue=3&rft.spage=393&rft.epage=404&rft.pages=393-404&rft.issn=1023-8883&rft.eissn=1573-2711&rft_id=info:doi/10.1007/s11249-014-0367-3&rft_dat=%3Cproquest_cross%3E2281323280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281323280&rft_id=info:pmid/&rfr_iscdi=true |