Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites

More durable, low-friction self-lubricating materials in modern industry are greatly needed for tribological systems. The current paper presents the tribological performance of TiAl matrix self-lubricating composites (TSC) containing MoS 2 , hexagonal BN and Ti 3 SiC 2 designated as MhT against GCr1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tribology letters 2014-09, Vol.55 (3), p.393-404
Hauptverfasser: Xu, Zengshi, Shi, Xiaoliang, Zhang, Qiaoxin, Zhai, Wenzheng, Li, Xixing, Yao, Jie, Chen, Long, Zhu, Qingshuai, Xiaov, Yecheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 404
container_issue 3
container_start_page 393
container_title Tribology letters
container_volume 55
creator Xu, Zengshi
Shi, Xiaoliang
Zhang, Qiaoxin
Zhai, Wenzheng
Li, Xixing
Yao, Jie
Chen, Long
Zhu, Qingshuai
Xiaov, Yecheng
description More durable, low-friction self-lubricating materials in modern industry are greatly needed for tribological systems. The current paper presents the tribological performance of TiAl matrix self-lubricating composites (TSC) containing MoS 2 , hexagonal BN and Ti 3 SiC 2 designated as MhT against GCr15 steel counterface under several sliding speeds from 0.2 to 0.8 m s −1 and applied loads from 6 to 12 N. The results suggested that MhT played an important role in decreasing friction coefficients and wear rates. The covering percentage of transfer layers on worn surfaces varied with the changing of sliding speeds and applied loads, hence resulting in the distinct friction and wear characteristics of TSC. TSC containing 10 wt% MhT exhibited the best excellent tribological performance at 10 N–0.8 m s −1 , which could be due to the formation of the best compaction and largest coverage of transfer layer on the worn surfaces.
doi_str_mv 10.1007/s11249-014-0367-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2281323280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281323280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-b8957712bd143d1675abe1fe59dc9bc89b444fedeeb5737894ba2c964b406383</originalsourceid><addsrcrecordid>eNp1kE1LAzEURQdRsFZ_gLuA62i-ZpJZllo_oKLQ2YdkJikp6WRMpqD4581Q0ZWr9xbn3Me7RXGN0S1GiN8ljAmrIcIMIlpxSE-KGS45hYRjfJp3RCgUQtDz4iKlHULZEuWs-FpZa9oRBAs23nWu34LNYEwHVN-BxTB4l_d1UB0IPbiPn79UE50OPmxdqzx4M9GGuFd9a6akxi08eFFjdB9gY7yF_qBjBsdJXIb9EJIbTboszqzyyVz9zHnRPKya5RNcvz4-Lxdr2LKSjFCLuuQcE91hRjtc8VJpg60p666tdStqzRizpjNG54e5qJlWpK0rphmqqKDz4uYYO8TwfjBplLtwiH2-KAkRmBJKBMoUPlJtDClFY-UQ3V7FT4mRnCqWx4plrlhOFUuaHXJ0Umb7rYl_yf9L36TMfuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281323280</pqid></control><display><type>article</type><title>Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, Zengshi ; Shi, Xiaoliang ; Zhang, Qiaoxin ; Zhai, Wenzheng ; Li, Xixing ; Yao, Jie ; Chen, Long ; Zhu, Qingshuai ; Xiaov, Yecheng</creator><creatorcontrib>Xu, Zengshi ; Shi, Xiaoliang ; Zhang, Qiaoxin ; Zhai, Wenzheng ; Li, Xixing ; Yao, Jie ; Chen, Long ; Zhu, Qingshuai ; Xiaov, Yecheng</creatorcontrib><description>More durable, low-friction self-lubricating materials in modern industry are greatly needed for tribological systems. The current paper presents the tribological performance of TiAl matrix self-lubricating composites (TSC) containing MoS 2 , hexagonal BN and Ti 3 SiC 2 designated as MhT against GCr15 steel counterface under several sliding speeds from 0.2 to 0.8 m s −1 and applied loads from 6 to 12 N. The results suggested that MhT played an important role in decreasing friction coefficients and wear rates. The covering percentage of transfer layers on worn surfaces varied with the changing of sliding speeds and applied loads, hence resulting in the distinct friction and wear characteristics of TSC. TSC containing 10 wt% MhT exhibited the best excellent tribological performance at 10 N–0.8 m s −1 , which could be due to the formation of the best compaction and largest coverage of transfer layer on the worn surfaces.</description><identifier>ISSN: 1023-8883</identifier><identifier>EISSN: 1573-2711</identifier><identifier>DOI: 10.1007/s11249-014-0367-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Chemistry and Materials Science ; Coefficient of friction ; Composite materials ; Corrosion and Coatings ; Friction ; Intermetallic compounds ; Lubrication ; Materials Science ; Molybdenum disulfide ; Nanotechnology ; Original Paper ; Physical Chemistry ; Self lubrication ; Sliding ; Surfaces and Interfaces ; Theoretical and Applied Mechanics ; Thin Films ; Titanium aluminides ; Titanium silicon carbide ; Tribology ; Wear rate</subject><ispartof>Tribology letters, 2014-09, Vol.55 (3), p.393-404</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Tribology Letters is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-b8957712bd143d1675abe1fe59dc9bc89b444fedeeb5737894ba2c964b406383</citedby><cites>FETCH-LOGICAL-c452t-b8957712bd143d1675abe1fe59dc9bc89b444fedeeb5737894ba2c964b406383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11249-014-0367-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11249-014-0367-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Zengshi</creatorcontrib><creatorcontrib>Shi, Xiaoliang</creatorcontrib><creatorcontrib>Zhang, Qiaoxin</creatorcontrib><creatorcontrib>Zhai, Wenzheng</creatorcontrib><creatorcontrib>Li, Xixing</creatorcontrib><creatorcontrib>Yao, Jie</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Zhu, Qingshuai</creatorcontrib><creatorcontrib>Xiaov, Yecheng</creatorcontrib><title>Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites</title><title>Tribology letters</title><addtitle>Tribol Lett</addtitle><description>More durable, low-friction self-lubricating materials in modern industry are greatly needed for tribological systems. The current paper presents the tribological performance of TiAl matrix self-lubricating composites (TSC) containing MoS 2 , hexagonal BN and Ti 3 SiC 2 designated as MhT against GCr15 steel counterface under several sliding speeds from 0.2 to 0.8 m s −1 and applied loads from 6 to 12 N. The results suggested that MhT played an important role in decreasing friction coefficients and wear rates. The covering percentage of transfer layers on worn surfaces varied with the changing of sliding speeds and applied loads, hence resulting in the distinct friction and wear characteristics of TSC. TSC containing 10 wt% MhT exhibited the best excellent tribological performance at 10 N–0.8 m s −1 , which could be due to the formation of the best compaction and largest coverage of transfer layer on the worn surfaces.</description><subject>Chemistry and Materials Science</subject><subject>Coefficient of friction</subject><subject>Composite materials</subject><subject>Corrosion and Coatings</subject><subject>Friction</subject><subject>Intermetallic compounds</subject><subject>Lubrication</subject><subject>Materials Science</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Self lubrication</subject><subject>Sliding</subject><subject>Surfaces and Interfaces</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thin Films</subject><subject>Titanium aluminides</subject><subject>Titanium silicon carbide</subject><subject>Tribology</subject><subject>Wear rate</subject><issn>1023-8883</issn><issn>1573-2711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEURQdRsFZ_gLuA62i-ZpJZllo_oKLQ2YdkJikp6WRMpqD4581Q0ZWr9xbn3Me7RXGN0S1GiN8ljAmrIcIMIlpxSE-KGS45hYRjfJp3RCgUQtDz4iKlHULZEuWs-FpZa9oRBAs23nWu34LNYEwHVN-BxTB4l_d1UB0IPbiPn79UE50OPmxdqzx4M9GGuFd9a6akxi08eFFjdB9gY7yF_qBjBsdJXIb9EJIbTboszqzyyVz9zHnRPKya5RNcvz4-Lxdr2LKSjFCLuuQcE91hRjtc8VJpg60p666tdStqzRizpjNG54e5qJlWpK0rphmqqKDz4uYYO8TwfjBplLtwiH2-KAkRmBJKBMoUPlJtDClFY-UQ3V7FT4mRnCqWx4plrlhOFUuaHXJ0Umb7rYl_yf9L36TMfuM</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Xu, Zengshi</creator><creator>Shi, Xiaoliang</creator><creator>Zhang, Qiaoxin</creator><creator>Zhai, Wenzheng</creator><creator>Li, Xixing</creator><creator>Yao, Jie</creator><creator>Chen, Long</creator><creator>Zhu, Qingshuai</creator><creator>Xiaov, Yecheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140901</creationdate><title>Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites</title><author>Xu, Zengshi ; Shi, Xiaoliang ; Zhang, Qiaoxin ; Zhai, Wenzheng ; Li, Xixing ; Yao, Jie ; Chen, Long ; Zhu, Qingshuai ; Xiaov, Yecheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-b8957712bd143d1675abe1fe59dc9bc89b444fedeeb5737894ba2c964b406383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemistry and Materials Science</topic><topic>Coefficient of friction</topic><topic>Composite materials</topic><topic>Corrosion and Coatings</topic><topic>Friction</topic><topic>Intermetallic compounds</topic><topic>Lubrication</topic><topic>Materials Science</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Self lubrication</topic><topic>Sliding</topic><topic>Surfaces and Interfaces</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thin Films</topic><topic>Titanium aluminides</topic><topic>Titanium silicon carbide</topic><topic>Tribology</topic><topic>Wear rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zengshi</creatorcontrib><creatorcontrib>Shi, Xiaoliang</creatorcontrib><creatorcontrib>Zhang, Qiaoxin</creatorcontrib><creatorcontrib>Zhai, Wenzheng</creatorcontrib><creatorcontrib>Li, Xixing</creatorcontrib><creatorcontrib>Yao, Jie</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Zhu, Qingshuai</creatorcontrib><creatorcontrib>Xiaov, Yecheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Tribology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zengshi</au><au>Shi, Xiaoliang</au><au>Zhang, Qiaoxin</au><au>Zhai, Wenzheng</au><au>Li, Xixing</au><au>Yao, Jie</au><au>Chen, Long</au><au>Zhu, Qingshuai</au><au>Xiaov, Yecheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites</atitle><jtitle>Tribology letters</jtitle><stitle>Tribol Lett</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>55</volume><issue>3</issue><spage>393</spage><epage>404</epage><pages>393-404</pages><issn>1023-8883</issn><eissn>1573-2711</eissn><abstract>More durable, low-friction self-lubricating materials in modern industry are greatly needed for tribological systems. The current paper presents the tribological performance of TiAl matrix self-lubricating composites (TSC) containing MoS 2 , hexagonal BN and Ti 3 SiC 2 designated as MhT against GCr15 steel counterface under several sliding speeds from 0.2 to 0.8 m s −1 and applied loads from 6 to 12 N. The results suggested that MhT played an important role in decreasing friction coefficients and wear rates. The covering percentage of transfer layers on worn surfaces varied with the changing of sliding speeds and applied loads, hence resulting in the distinct friction and wear characteristics of TSC. TSC containing 10 wt% MhT exhibited the best excellent tribological performance at 10 N–0.8 m s −1 , which could be due to the formation of the best compaction and largest coverage of transfer layer on the worn surfaces.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11249-014-0367-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1023-8883
ispartof Tribology letters, 2014-09, Vol.55 (3), p.393-404
issn 1023-8883
1573-2711
language eng
recordid cdi_proquest_journals_2281323280
source SpringerLink Journals - AutoHoldings
subjects Chemistry and Materials Science
Coefficient of friction
Composite materials
Corrosion and Coatings
Friction
Intermetallic compounds
Lubrication
Materials Science
Molybdenum disulfide
Nanotechnology
Original Paper
Physical Chemistry
Self lubrication
Sliding
Surfaces and Interfaces
Theoretical and Applied Mechanics
Thin Films
Titanium aluminides
Titanium silicon carbide
Tribology
Wear rate
title Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Sliding%20Speed%20and%20Applied%20Load%20on%20Dry%20Sliding%20Tribological%20Performance%20of%20TiAl%20Matrix%20Self-lubricating%20Composites&rft.jtitle=Tribology%20letters&rft.au=Xu,%20Zengshi&rft.date=2014-09-01&rft.volume=55&rft.issue=3&rft.spage=393&rft.epage=404&rft.pages=393-404&rft.issn=1023-8883&rft.eissn=1573-2711&rft_id=info:doi/10.1007/s11249-014-0367-3&rft_dat=%3Cproquest_cross%3E2281323280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281323280&rft_id=info:pmid/&rfr_iscdi=true