On One System of Ordinary Differential Equations of Large Dimension and a Delay Equation

We consider some system of ordinary differential equations modeling a multistage synthesis of a substance. We prove the global limit theorems that establish connections between the solutions to a system of ordinary differential equations of large dimension and the solutions to a delay equation. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied and industrial mathematics 2019-07, Vol.13 (3), p.447-459
Hauptverfasser: Demidenko, G. V., Uvarova, I. A., Khazova, Yu. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 459
container_issue 3
container_start_page 447
container_title Journal of applied and industrial mathematics
container_volume 13
creator Demidenko, G. V.
Uvarova, I. A.
Khazova, Yu. A.
description We consider some system of ordinary differential equations modeling a multistage synthesis of a substance. We prove the global limit theorems that establish connections between the solutions to a system of ordinary differential equations of large dimension and the solutions to a delay equation. The obtained results enable us to find the approximate solutions to the systems under consideration of an arbitrarily high dimension on the whole half-axis. Some approximation estimates are established.
doi_str_mv 10.1134/S1990478919030062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2281216325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281216325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1832-aa0e43224d9a2794fb1a914144b8162c0d03c71f1996867a76c4ce7076762e3f3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGo_gLeA52pmEpPNUdr6Bwp7qIK3Jd2dlJU22ybbQ7-9KZV6EE8zvPm9N8wwdgviHkCqhwVYK5QpLFghhdB4wQZHaayMNZfnvrDXbJRSuxQSUEutccA-y8DLQHxxSD1teOd5GZs2uHjg09Z7ihT61q35bLd3fduFdETmLq4ozzcUUta4Cw13fEprdziDN-zKu3Wi0U8dso_n2fvkdTwvX94mT_NxDYXEsXOClERUjXVorPJLcBYUKLUsQGMtGiFrAz6foAttnNG1qskIo41Gkl4O2d0pdxu73Z5SX311-xjyygqxAAQt8TFTcKLq2KUUyVfb2G7ylRWI6vjD6s8PswdPnpTZsKL4m_y_6Rs57nDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281216325</pqid></control><display><type>article</type><title>On One System of Ordinary Differential Equations of Large Dimension and a Delay Equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Demidenko, G. V. ; Uvarova, I. A. ; Khazova, Yu. A.</creator><creatorcontrib>Demidenko, G. V. ; Uvarova, I. A. ; Khazova, Yu. A.</creatorcontrib><description>We consider some system of ordinary differential equations modeling a multistage synthesis of a substance. We prove the global limit theorems that establish connections between the solutions to a system of ordinary differential equations of large dimension and the solutions to a delay equation. The obtained results enable us to find the approximate solutions to the systems under consideration of an arbitrarily high dimension on the whole half-axis. Some approximation estimates are established.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478919030062</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Delay ; Differential equations ; Mathematics ; Mathematics and Statistics ; Ordinary differential equations</subject><ispartof>Journal of applied and industrial mathematics, 2019-07, Vol.13 (3), p.447-459</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1832-aa0e43224d9a2794fb1a914144b8162c0d03c71f1996867a76c4ce7076762e3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990478919030062$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990478919030062$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Demidenko, G. V.</creatorcontrib><creatorcontrib>Uvarova, I. A.</creatorcontrib><creatorcontrib>Khazova, Yu. A.</creatorcontrib><title>On One System of Ordinary Differential Equations of Large Dimension and a Delay Equation</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>We consider some system of ordinary differential equations modeling a multistage synthesis of a substance. We prove the global limit theorems that establish connections between the solutions to a system of ordinary differential equations of large dimension and the solutions to a delay equation. The obtained results enable us to find the approximate solutions to the systems under consideration of an arbitrarily high dimension on the whole half-axis. Some approximation estimates are established.</description><subject>Delay</subject><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary differential equations</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWGo_gLeA52pmEpPNUdr6Bwp7qIK3Jd2dlJU22ybbQ7-9KZV6EE8zvPm9N8wwdgviHkCqhwVYK5QpLFghhdB4wQZHaayMNZfnvrDXbJRSuxQSUEutccA-y8DLQHxxSD1teOd5GZs2uHjg09Z7ihT61q35bLd3fduFdETmLq4ozzcUUta4Cw13fEprdziDN-zKu3Wi0U8dso_n2fvkdTwvX94mT_NxDYXEsXOClERUjXVorPJLcBYUKLUsQGMtGiFrAz6foAttnNG1qskIo41Gkl4O2d0pdxu73Z5SX311-xjyygqxAAQt8TFTcKLq2KUUyVfb2G7ylRWI6vjD6s8PswdPnpTZsKL4m_y_6Rs57nDA</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Demidenko, G. V.</creator><creator>Uvarova, I. A.</creator><creator>Khazova, Yu. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20190701</creationdate><title>On One System of Ordinary Differential Equations of Large Dimension and a Delay Equation</title><author>Demidenko, G. V. ; Uvarova, I. A. ; Khazova, Yu. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1832-aa0e43224d9a2794fb1a914144b8162c0d03c71f1996867a76c4ce7076762e3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Delay</topic><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demidenko, G. V.</creatorcontrib><creatorcontrib>Uvarova, I. A.</creatorcontrib><creatorcontrib>Khazova, Yu. A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demidenko, G. V.</au><au>Uvarova, I. A.</au><au>Khazova, Yu. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On One System of Ordinary Differential Equations of Large Dimension and a Delay Equation</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>447</spage><epage>459</epage><pages>447-459</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>We consider some system of ordinary differential equations modeling a multistage synthesis of a substance. We prove the global limit theorems that establish connections between the solutions to a system of ordinary differential equations of large dimension and the solutions to a delay equation. The obtained results enable us to find the approximate solutions to the systems under consideration of an arbitrarily high dimension on the whole half-axis. Some approximation estimates are established.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478919030062</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1990-4789
ispartof Journal of applied and industrial mathematics, 2019-07, Vol.13 (3), p.447-459
issn 1990-4789
1990-4797
language eng
recordid cdi_proquest_journals_2281216325
source SpringerLink Journals - AutoHoldings
subjects Delay
Differential equations
Mathematics
Mathematics and Statistics
Ordinary differential equations
title On One System of Ordinary Differential Equations of Large Dimension and a Delay Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20One%20System%20of%20Ordinary%20Differential%20Equations%20of%20Large%20Dimension%20and%20a%20Delay%20Equation&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Demidenko,%20G.%20V.&rft.date=2019-07-01&rft.volume=13&rft.issue=3&rft.spage=447&rft.epage=459&rft.pages=447-459&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478919030062&rft_dat=%3Cproquest_cross%3E2281216325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281216325&rft_id=info:pmid/&rfr_iscdi=true