Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks as bifunctional catalysts for highly efficient water splitting
Nanostructured transition-metal phosphides (TMPs) have recently emerged as a new family of non-noble-metal catalysts to drive water splitting due to their unique electronic and redox properties. However, most progress focused on developing mono-metal phosphide nanostructures. In this work, a facile...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2019-09, Vol.318, p.244-251 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | |
container_start_page | 244 |
container_title | Electrochimica acta |
container_volume | 318 |
creator | Zhou, Qianqian Wang, Jiayan Guo, Fenya Li, Hongwei Zhou, Mengzhe Qian, Jinjie Li, Ting-Ting Zheng, Yue-Qing |
description | Nanostructured transition-metal phosphides (TMPs) have recently emerged as a new family of non-noble-metal catalysts to drive water splitting due to their unique electronic and redox properties. However, most progress focused on developing mono-metal phosphide nanostructures. In this work, a facile template-based method and low-temperature phosphorization process are proposed to fabricate self-supported Ni-based bimetallic phosphide encapsulated in amorphous carbon by using metal-organic framework (MOF) as the precursor and three-dimensional nickel foam (NF) as the support, which is termed as Ni2P-Co2P@C/NF. This composite demonstrates remarkable electrocatalytic activities towards both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte (1 M KOH, pH 13.6), affording low overpotentials of 290 and 167 mV to deliver the current density of 50 mA cm−2 for OER and HER, respectively, preceding the majority of recently reported MOFs-derived TMPs. This excellent performance is considered as the results of its large catalytic surface area, concerted synergy from composited structure as well as the increased electrical conductivity. |
doi_str_mv | 10.1016/j.electacta.2019.06.082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2281148437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468619312228</els_id><sourcerecordid>2281148437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-a2506313440bcd8552abd0b11942b28ab78184fa4f78a90b14c5cbfbf4cc2f73</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVJoZs0nyGCnu3qn23tMYS2KQR6aO5Ckke72notdyQn7JfpZ622W3otDMxh3u8xj0fIHWctZ7z_eGhhAl9snVYwvm1Z3zIt3pAN14NspO62V2TDGJeN6nX_jlznfGCMDf3ANuTXd5hCk9dlSVhgpC4eodhpip4u-5SXfRyh8RZdmuls55QLrr6sCJmOgPGlIgHTkf6hmoQ7O1c0oD3Ca8IfmdpcPcM6-xLTbCfqbRWecsk0JKT7uNtPJwohRB9hLvTVFkCalymWEufde_I22CnD7d99Q54_f3p-eGyevn35-nD_1HipZGms6FgvuVSKOT_qrhPWjcxxvlXCCW3doLlWwaowaLutB-U774ILynsRBnlDPlxsF0w_V8jFHNKK9d1shNCcK63kWTVcVB5TzgjBLBiPFk-GM3PuwhzMvy7MuQvDelO7qOT9hYSa4SUCmnyO62GMWPVmTPG_Hr8Bemicmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281148437</pqid></control><display><type>article</type><title>Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks as bifunctional catalysts for highly efficient water splitting</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhou, Qianqian ; Wang, Jiayan ; Guo, Fenya ; Li, Hongwei ; Zhou, Mengzhe ; Qian, Jinjie ; Li, Ting-Ting ; Zheng, Yue-Qing</creator><creatorcontrib>Zhou, Qianqian ; Wang, Jiayan ; Guo, Fenya ; Li, Hongwei ; Zhou, Mengzhe ; Qian, Jinjie ; Li, Ting-Ting ; Zheng, Yue-Qing</creatorcontrib><description>Nanostructured transition-metal phosphides (TMPs) have recently emerged as a new family of non-noble-metal catalysts to drive water splitting due to their unique electronic and redox properties. However, most progress focused on developing mono-metal phosphide nanostructures. In this work, a facile template-based method and low-temperature phosphorization process are proposed to fabricate self-supported Ni-based bimetallic phosphide encapsulated in amorphous carbon by using metal-organic framework (MOF) as the precursor and three-dimensional nickel foam (NF) as the support, which is termed as Ni2P-Co2P@C/NF. This composite demonstrates remarkable electrocatalytic activities towards both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte (1 M KOH, pH 13.6), affording low overpotentials of 290 and 167 mV to deliver the current density of 50 mA cm−2 for OER and HER, respectively, preceding the majority of recently reported MOFs-derived TMPs. This excellent performance is considered as the results of its large catalytic surface area, concerted synergy from composited structure as well as the increased electrical conductivity.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2019.06.082</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bifunctional catalyst ; Bimetallic phosphides ; Bimetals ; Carbon ; Carbon encapsulating ; Catalysis ; Catalysts ; Electrical resistivity ; Hydrogen evolution reactions ; Metal foams ; Metal-organic frameworks ; Nanostructure ; Nickel ; Noble metals ; Oxygen evolution reactions ; Phosphating (coating) ; Phosphides ; Synergy ; Transition metals ; Water splitting</subject><ispartof>Electrochimica acta, 2019-09, Vol.318, p.244-251</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 20, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-a2506313440bcd8552abd0b11942b28ab78184fa4f78a90b14c5cbfbf4cc2f73</citedby><cites>FETCH-LOGICAL-c343t-a2506313440bcd8552abd0b11942b28ab78184fa4f78a90b14c5cbfbf4cc2f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2019.06.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Zhou, Qianqian</creatorcontrib><creatorcontrib>Wang, Jiayan</creatorcontrib><creatorcontrib>Guo, Fenya</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Zhou, Mengzhe</creatorcontrib><creatorcontrib>Qian, Jinjie</creatorcontrib><creatorcontrib>Li, Ting-Ting</creatorcontrib><creatorcontrib>Zheng, Yue-Qing</creatorcontrib><title>Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks as bifunctional catalysts for highly efficient water splitting</title><title>Electrochimica acta</title><description>Nanostructured transition-metal phosphides (TMPs) have recently emerged as a new family of non-noble-metal catalysts to drive water splitting due to their unique electronic and redox properties. However, most progress focused on developing mono-metal phosphide nanostructures. In this work, a facile template-based method and low-temperature phosphorization process are proposed to fabricate self-supported Ni-based bimetallic phosphide encapsulated in amorphous carbon by using metal-organic framework (MOF) as the precursor and three-dimensional nickel foam (NF) as the support, which is termed as Ni2P-Co2P@C/NF. This composite demonstrates remarkable electrocatalytic activities towards both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte (1 M KOH, pH 13.6), affording low overpotentials of 290 and 167 mV to deliver the current density of 50 mA cm−2 for OER and HER, respectively, preceding the majority of recently reported MOFs-derived TMPs. This excellent performance is considered as the results of its large catalytic surface area, concerted synergy from composited structure as well as the increased electrical conductivity.</description><subject>Bifunctional catalyst</subject><subject>Bimetallic phosphides</subject><subject>Bimetals</subject><subject>Carbon</subject><subject>Carbon encapsulating</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Electrical resistivity</subject><subject>Hydrogen evolution reactions</subject><subject>Metal foams</subject><subject>Metal-organic frameworks</subject><subject>Nanostructure</subject><subject>Nickel</subject><subject>Noble metals</subject><subject>Oxygen evolution reactions</subject><subject>Phosphating (coating)</subject><subject>Phosphides</subject><subject>Synergy</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU9r3DAQxUVJoZs0nyGCnu3qn23tMYS2KQR6aO5Ckke72notdyQn7JfpZ622W3otDMxh3u8xj0fIHWctZ7z_eGhhAl9snVYwvm1Z3zIt3pAN14NspO62V2TDGJeN6nX_jlznfGCMDf3ANuTXd5hCk9dlSVhgpC4eodhpip4u-5SXfRyh8RZdmuls55QLrr6sCJmOgPGlIgHTkf6hmoQ7O1c0oD3Ca8IfmdpcPcM6-xLTbCfqbRWecsk0JKT7uNtPJwohRB9hLvTVFkCalymWEufde_I22CnD7d99Q54_f3p-eGyevn35-nD_1HipZGms6FgvuVSKOT_qrhPWjcxxvlXCCW3doLlWwaowaLutB-U774ILynsRBnlDPlxsF0w_V8jFHNKK9d1shNCcK63kWTVcVB5TzgjBLBiPFk-GM3PuwhzMvy7MuQvDelO7qOT9hYSa4SUCmnyO62GMWPVmTPG_Hr8Bemicmg</recordid><startdate>20190920</startdate><enddate>20190920</enddate><creator>Zhou, Qianqian</creator><creator>Wang, Jiayan</creator><creator>Guo, Fenya</creator><creator>Li, Hongwei</creator><creator>Zhou, Mengzhe</creator><creator>Qian, Jinjie</creator><creator>Li, Ting-Ting</creator><creator>Zheng, Yue-Qing</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190920</creationdate><title>Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks as bifunctional catalysts for highly efficient water splitting</title><author>Zhou, Qianqian ; Wang, Jiayan ; Guo, Fenya ; Li, Hongwei ; Zhou, Mengzhe ; Qian, Jinjie ; Li, Ting-Ting ; Zheng, Yue-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-a2506313440bcd8552abd0b11942b28ab78184fa4f78a90b14c5cbfbf4cc2f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bifunctional catalyst</topic><topic>Bimetallic phosphides</topic><topic>Bimetals</topic><topic>Carbon</topic><topic>Carbon encapsulating</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Electrical resistivity</topic><topic>Hydrogen evolution reactions</topic><topic>Metal foams</topic><topic>Metal-organic frameworks</topic><topic>Nanostructure</topic><topic>Nickel</topic><topic>Noble metals</topic><topic>Oxygen evolution reactions</topic><topic>Phosphating (coating)</topic><topic>Phosphides</topic><topic>Synergy</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Qianqian</creatorcontrib><creatorcontrib>Wang, Jiayan</creatorcontrib><creatorcontrib>Guo, Fenya</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Zhou, Mengzhe</creatorcontrib><creatorcontrib>Qian, Jinjie</creatorcontrib><creatorcontrib>Li, Ting-Ting</creatorcontrib><creatorcontrib>Zheng, Yue-Qing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Qianqian</au><au>Wang, Jiayan</au><au>Guo, Fenya</au><au>Li, Hongwei</au><au>Zhou, Mengzhe</au><au>Qian, Jinjie</au><au>Li, Ting-Ting</au><au>Zheng, Yue-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks as bifunctional catalysts for highly efficient water splitting</atitle><jtitle>Electrochimica acta</jtitle><date>2019-09-20</date><risdate>2019</risdate><volume>318</volume><spage>244</spage><epage>251</epage><pages>244-251</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Nanostructured transition-metal phosphides (TMPs) have recently emerged as a new family of non-noble-metal catalysts to drive water splitting due to their unique electronic and redox properties. However, most progress focused on developing mono-metal phosphide nanostructures. In this work, a facile template-based method and low-temperature phosphorization process are proposed to fabricate self-supported Ni-based bimetallic phosphide encapsulated in amorphous carbon by using metal-organic framework (MOF) as the precursor and three-dimensional nickel foam (NF) as the support, which is termed as Ni2P-Co2P@C/NF. This composite demonstrates remarkable electrocatalytic activities towards both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte (1 M KOH, pH 13.6), affording low overpotentials of 290 and 167 mV to deliver the current density of 50 mA cm−2 for OER and HER, respectively, preceding the majority of recently reported MOFs-derived TMPs. This excellent performance is considered as the results of its large catalytic surface area, concerted synergy from composited structure as well as the increased electrical conductivity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2019.06.082</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2019-09, Vol.318, p.244-251 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2281148437 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Bifunctional catalyst Bimetallic phosphides Bimetals Carbon Carbon encapsulating Catalysis Catalysts Electrical resistivity Hydrogen evolution reactions Metal foams Metal-organic frameworks Nanostructure Nickel Noble metals Oxygen evolution reactions Phosphating (coating) Phosphides Synergy Transition metals Water splitting |
title | Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks as bifunctional catalysts for highly efficient water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-supported%20bimetallic%20phosphide-carbon%20nanostructures%20derived%20from%20metal-organic%20frameworks%20as%20bifunctional%20catalysts%20for%20highly%20efficient%20water%20splitting&rft.jtitle=Electrochimica%20acta&rft.au=Zhou,%20Qianqian&rft.date=2019-09-20&rft.volume=318&rft.spage=244&rft.epage=251&rft.pages=244-251&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2019.06.082&rft_dat=%3Cproquest_cross%3E2281148437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281148437&rft_id=info:pmid/&rft_els_id=S0013468619312228&rfr_iscdi=true |