A quantitative uncertainty metric controls error in neural network-driven chemical discovery

Machine learning (ML) models, such as artificial neural networks, have emerged as a complement to high-throughput screening, enabling characterization of new compounds in seconds instead of hours. The promise of ML models to enable large-scale chemical space exploration can only be realized if it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2019-09, Vol.1 (34), p.7913-7922
Hauptverfasser: Janet, Jon Paul, Duan, Chenru, Yang, Tzuhsiung, Nandy, Aditya, Kulik, Heather J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!