Optimal allocation of test times for reliability growth testing with interval-valued model parameters

Reliability growth testing is widely used to identify and remove failure modes in the development of complex systems. Different models have been proposed to track the progress of reliability growth during test, and previous research has addressed the improvement of after-testing system reliability b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability Journal of risk and reliability, 2019-10, Vol.233 (5), p.791-802
Hauptverfasser: Wang, Wei, Xu, Yaofeng, Hou, Liguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 802
container_issue 5
container_start_page 791
container_title Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability
container_volume 233
creator Wang, Wei
Xu, Yaofeng
Hou, Liguo
description Reliability growth testing is widely used to identify and remove failure modes in the development of complex systems. Different models have been proposed to track the progress of reliability growth during test, and previous research has addressed the improvement of after-testing system reliability by allocating limited testing resources. The majority of reliability growth testing models are based on the AMSAA/Crow model with known parameters, but there is a lack of work focusing on the situation when the AMSAA/Crow parameters are subject to uncertainty. In this article, we investigate a reliability growth testing allocation problem to series–parallel systems that considers parameter uncertainty in the AMSAA/Crow models. The model parameters are assumed to be known as uncertain-but-bounded values. Interval arithmetic and an interval order relation reflecting decision maker’s preference are used to analyze the uncertain parameters. In order to determine the optimal allocation of testing time for each component or subsystem aiming to maximize the after-testing system reliability, a modified genetic algorithm is developed. A penalty function is used to handle the testing resource limitations, and the techniques of dual mutation and random keys are used in the algorithm to improve searching efficiency. Computational results indicate that the interval analysis is a useful tool to deal with parameter uncertainty of reliability growth testing allocation problems.
doi_str_mv 10.1177/1748006X19827425
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2281054903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1748006X19827425</sage_id><sourcerecordid>2281054903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-db278c4789e45f26a2e1818dab39de4ca96635d18494b0676be6d03d52551c8f3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrd49BjyvJtlskj1K8QuEXhR6W7Kb2ZqSbtYktfTfm1pREDwM8_Xem-EhdEnJNaVS3lDJFSFiQWvFJGfVEZrsRwUhUh3_1GJxis5iXBHCJRVkgmA-JrvWDmvnfKeT9QP2PU4QE84LiLj3AQdwVrfW2bTDy-C36e0LYYcl3trc2CFB-NCuyLEBg9fegMOjDnoNeRPP0UmvXYSL7zxFr_d3L7PH4nn-8DS7fS66UrBUmJZJ1XGpauBVz4RmQBVVRrdlbYB3uhairAxVvOYtEVK0IAwpTcWqinaqL6fo6qA7Bv--yR82K78JQz7ZMKYoqXhNyowiB1QXfIwB-mYM2YOwayhp9mY2f83MlOJAiXoJv6L_4j8BHSp1kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281054903</pqid></control><display><type>article</type><title>Optimal allocation of test times for reliability growth testing with interval-valued model parameters</title><source>Access via SAGE</source><creator>Wang, Wei ; Xu, Yaofeng ; Hou, Liguo</creator><creatorcontrib>Wang, Wei ; Xu, Yaofeng ; Hou, Liguo</creatorcontrib><description>Reliability growth testing is widely used to identify and remove failure modes in the development of complex systems. Different models have been proposed to track the progress of reliability growth during test, and previous research has addressed the improvement of after-testing system reliability by allocating limited testing resources. The majority of reliability growth testing models are based on the AMSAA/Crow model with known parameters, but there is a lack of work focusing on the situation when the AMSAA/Crow parameters are subject to uncertainty. In this article, we investigate a reliability growth testing allocation problem to series–parallel systems that considers parameter uncertainty in the AMSAA/Crow models. The model parameters are assumed to be known as uncertain-but-bounded values. Interval arithmetic and an interval order relation reflecting decision maker’s preference are used to analyze the uncertain parameters. In order to determine the optimal allocation of testing time for each component or subsystem aiming to maximize the after-testing system reliability, a modified genetic algorithm is developed. A penalty function is used to handle the testing resource limitations, and the techniques of dual mutation and random keys are used in the algorithm to improve searching efficiency. Computational results indicate that the interval analysis is a useful tool to deal with parameter uncertainty of reliability growth testing allocation problems.</description><identifier>ISSN: 1748-006X</identifier><identifier>EISSN: 1748-0078</identifier><identifier>DOI: 10.1177/1748006X19827425</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Complex systems ; Component reliability ; Decision analysis ; Decision making ; Failure modes ; Genetic algorithms ; Interval arithmetic ; Mathematical models ; Order parameters ; Parameter identification ; Parameter uncertainty ; Penalty function ; Search algorithms ; Subsystems ; System reliability ; Testing time ; Uncertainty analysis</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability, 2019-10, Vol.233 (5), p.791-802</ispartof><rights>IMechE 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-db278c4789e45f26a2e1818dab39de4ca96635d18494b0676be6d03d52551c8f3</citedby><cites>FETCH-LOGICAL-c362t-db278c4789e45f26a2e1818dab39de4ca96635d18494b0676be6d03d52551c8f3</cites><orcidid>0000-0001-6257-6564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1748006X19827425$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1748006X19827425$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xu, Yaofeng</creatorcontrib><creatorcontrib>Hou, Liguo</creatorcontrib><title>Optimal allocation of test times for reliability growth testing with interval-valued model parameters</title><title>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</title><description>Reliability growth testing is widely used to identify and remove failure modes in the development of complex systems. Different models have been proposed to track the progress of reliability growth during test, and previous research has addressed the improvement of after-testing system reliability by allocating limited testing resources. The majority of reliability growth testing models are based on the AMSAA/Crow model with known parameters, but there is a lack of work focusing on the situation when the AMSAA/Crow parameters are subject to uncertainty. In this article, we investigate a reliability growth testing allocation problem to series–parallel systems that considers parameter uncertainty in the AMSAA/Crow models. The model parameters are assumed to be known as uncertain-but-bounded values. Interval arithmetic and an interval order relation reflecting decision maker’s preference are used to analyze the uncertain parameters. In order to determine the optimal allocation of testing time for each component or subsystem aiming to maximize the after-testing system reliability, a modified genetic algorithm is developed. A penalty function is used to handle the testing resource limitations, and the techniques of dual mutation and random keys are used in the algorithm to improve searching efficiency. Computational results indicate that the interval analysis is a useful tool to deal with parameter uncertainty of reliability growth testing allocation problems.</description><subject>Complex systems</subject><subject>Component reliability</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Failure modes</subject><subject>Genetic algorithms</subject><subject>Interval arithmetic</subject><subject>Mathematical models</subject><subject>Order parameters</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Penalty function</subject><subject>Search algorithms</subject><subject>Subsystems</subject><subject>System reliability</subject><subject>Testing time</subject><subject>Uncertainty analysis</subject><issn>1748-006X</issn><issn>1748-0078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrd49BjyvJtlskj1K8QuEXhR6W7Kb2ZqSbtYktfTfm1pREDwM8_Xem-EhdEnJNaVS3lDJFSFiQWvFJGfVEZrsRwUhUh3_1GJxis5iXBHCJRVkgmA-JrvWDmvnfKeT9QP2PU4QE84LiLj3AQdwVrfW2bTDy-C36e0LYYcl3trc2CFB-NCuyLEBg9fegMOjDnoNeRPP0UmvXYSL7zxFr_d3L7PH4nn-8DS7fS66UrBUmJZJ1XGpauBVz4RmQBVVRrdlbYB3uhairAxVvOYtEVK0IAwpTcWqinaqL6fo6qA7Bv--yR82K78JQz7ZMKYoqXhNyowiB1QXfIwB-mYM2YOwayhp9mY2f83MlOJAiXoJv6L_4j8BHSp1kQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Wang, Wei</creator><creator>Xu, Yaofeng</creator><creator>Hou, Liguo</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-6257-6564</orcidid></search><sort><creationdate>20191001</creationdate><title>Optimal allocation of test times for reliability growth testing with interval-valued model parameters</title><author>Wang, Wei ; Xu, Yaofeng ; Hou, Liguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-db278c4789e45f26a2e1818dab39de4ca96635d18494b0676be6d03d52551c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Complex systems</topic><topic>Component reliability</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Failure modes</topic><topic>Genetic algorithms</topic><topic>Interval arithmetic</topic><topic>Mathematical models</topic><topic>Order parameters</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Penalty function</topic><topic>Search algorithms</topic><topic>Subsystems</topic><topic>System reliability</topic><topic>Testing time</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xu, Yaofeng</creatorcontrib><creatorcontrib>Hou, Liguo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wei</au><au>Xu, Yaofeng</au><au>Hou, Liguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal allocation of test times for reliability growth testing with interval-valued model parameters</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>233</volume><issue>5</issue><spage>791</spage><epage>802</epage><pages>791-802</pages><issn>1748-006X</issn><eissn>1748-0078</eissn><abstract>Reliability growth testing is widely used to identify and remove failure modes in the development of complex systems. Different models have been proposed to track the progress of reliability growth during test, and previous research has addressed the improvement of after-testing system reliability by allocating limited testing resources. The majority of reliability growth testing models are based on the AMSAA/Crow model with known parameters, but there is a lack of work focusing on the situation when the AMSAA/Crow parameters are subject to uncertainty. In this article, we investigate a reliability growth testing allocation problem to series–parallel systems that considers parameter uncertainty in the AMSAA/Crow models. The model parameters are assumed to be known as uncertain-but-bounded values. Interval arithmetic and an interval order relation reflecting decision maker’s preference are used to analyze the uncertain parameters. In order to determine the optimal allocation of testing time for each component or subsystem aiming to maximize the after-testing system reliability, a modified genetic algorithm is developed. A penalty function is used to handle the testing resource limitations, and the techniques of dual mutation and random keys are used in the algorithm to improve searching efficiency. Computational results indicate that the interval analysis is a useful tool to deal with parameter uncertainty of reliability growth testing allocation problems.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1748006X19827425</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6257-6564</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-006X
ispartof Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability, 2019-10, Vol.233 (5), p.791-802
issn 1748-006X
1748-0078
language eng
recordid cdi_proquest_journals_2281054903
source Access via SAGE
subjects Complex systems
Component reliability
Decision analysis
Decision making
Failure modes
Genetic algorithms
Interval arithmetic
Mathematical models
Order parameters
Parameter identification
Parameter uncertainty
Penalty function
Search algorithms
Subsystems
System reliability
Testing time
Uncertainty analysis
title Optimal allocation of test times for reliability growth testing with interval-valued model parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20allocation%20of%20test%20times%20for%20reliability%20growth%20testing%20with%20interval-valued%20model%20parameters&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20O,%20Journal%20of%20risk%20and%20reliability&rft.au=Wang,%20Wei&rft.date=2019-10-01&rft.volume=233&rft.issue=5&rft.spage=791&rft.epage=802&rft.pages=791-802&rft.issn=1748-006X&rft.eissn=1748-0078&rft_id=info:doi/10.1177/1748006X19827425&rft_dat=%3Cproquest_cross%3E2281054903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281054903&rft_id=info:pmid/&rft_sage_id=10.1177_1748006X19827425&rfr_iscdi=true