Damage evolution in the AMg6 alloy during high and very high cycle fatigue
Paper presents the “in situ” method for determining of irreversible fatigue damage accumulation, based on the analysis of nonlinear manifestations of the feedback signal in a closed system of an ultrasonic fatigue system. During very high cycle (gigacycle) fatigue, the anomalies of the elastic prope...
Gespeichert in:
Veröffentlicht in: | Frattura ed integritá strutturale 2019-07, Vol.13 (49), p.383-395 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng ; ita |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 395 |
---|---|
container_issue | 49 |
container_start_page | 383 |
container_title | Frattura ed integritá strutturale |
container_volume | 13 |
creator | Bannikov, Mikhail Bilalov, Dmitry Oborin, Vladimir Naimark, Oleg |
description | Paper presents the “in situ” method for determining of irreversible fatigue damage accumulation, based on the analysis of nonlinear manifestations of the feedback signal in a closed system of an ultrasonic fatigue system. During very high cycle (gigacycle) fatigue, the anomalies of the elastic properties of the material are appear, which leads to a nonlinearity effect in the amplitude of oscillations. This effect increases with the initiation and growth of fatigue cracks. The technology was applied to samples of AMG-6 alloy with preliminary dynamic deformation at various levels of average stress to determine the moment of initiation and growth of the fatigue crack in very high cycle fatigue regime. This method is applicable for the early detection of fatigue cracks both on the surface and inside the material under cyclic loading in the ultrasonic mode. On the basis of wide-range defining relations for a deformable solid body with mesoscopic defects, a mathematical model has been proposed that can adequately describe behavior of the material during fatigue failure. The results of mathematical modeling are in good agreement with the experimental data |
doi_str_mv | 10.3221/IGF-ESIS.49.38 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2280470640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2280470640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1120-2e7d01048503fd5246d18d7c0cd2ca764bb71a26b0f36d982b6d42a9716ff5f23</originalsourceid><addsrcrecordid>eNpNkM1PwkAUxDdGExG9et7Ec-vbj263R4KAGIwH9LzZ7kcpKS1uW5L-95TgwdPMJJN5Lz-EngnEjFLyul4to8V2vY15FjN5gyYkS0kks4zd_vP36KFt9wCCAvAJ-njTB1047E5N1XdlU-Oyxt3O4dlnIbCuqmbAtg9lXeBdWeywri0-uTBckxlM5bDXXVn07hHdeV217ulPp-hnufiev0ebr9V6PttEhhAKEXWpBQJcJsC8TSgXlkibGjCWGp0Knucp0VTk4JmwmaS5sJzq8X_hfeIpm6KX6-4xNL-9azu1b_pQjycVpRJ4CoLD2IqvLROatg3Oq2MoDzoMioC68FIjL3XhpXimmGRn_DJcjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2280470640</pqid></control><display><type>article</type><title>Damage evolution in the AMg6 alloy during high and very high cycle fatigue</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bannikov, Mikhail ; Bilalov, Dmitry ; Oborin, Vladimir ; Naimark, Oleg</creator><creatorcontrib>Bannikov, Mikhail ; Bilalov, Dmitry ; Oborin, Vladimir ; Naimark, Oleg</creatorcontrib><description>Paper presents the “in situ” method for determining of irreversible fatigue damage accumulation, based on the analysis of nonlinear manifestations of the feedback signal in a closed system of an ultrasonic fatigue system. During very high cycle (gigacycle) fatigue, the anomalies of the elastic properties of the material are appear, which leads to a nonlinearity effect in the amplitude of oscillations. This effect increases with the initiation and growth of fatigue cracks. The technology was applied to samples of AMG-6 alloy with preliminary dynamic deformation at various levels of average stress to determine the moment of initiation and growth of the fatigue crack in very high cycle fatigue regime. This method is applicable for the early detection of fatigue cracks both on the surface and inside the material under cyclic loading in the ultrasonic mode. On the basis of wide-range defining relations for a deformable solid body with mesoscopic defects, a mathematical model has been proposed that can adequately describe behavior of the material during fatigue failure. The results of mathematical modeling are in good agreement with the experimental data</description><identifier>ISSN: 1971-8993</identifier><identifier>EISSN: 1971-8993</identifier><identifier>DOI: 10.3221/IGF-ESIS.49.38</identifier><language>eng ; ita</language><publisher>Cassino: Gruppo Italiano Frattura</publisher><subject>Aluminum base alloys ; Anomalies ; Crack initiation ; Crack propagation ; Cyclic loads ; Damage accumulation ; Deformation ; Elastic properties ; Fatigue ; Fatigue cracks ; Fatigue failure ; Flaw detection ; Formability ; Fracture mechanics ; High cycle fatigue ; Mathematical analysis ; Mathematical models ; Nonlinear analysis ; Nonlinear systems ; Nonlinearity ; Oscillations</subject><ispartof>Frattura ed integritá strutturale, 2019-07, Vol.13 (49), p.383-395</ispartof><rights>2019. This article is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1120-2e7d01048503fd5246d18d7c0cd2ca764bb71a26b0f36d982b6d42a9716ff5f23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Bannikov, Mikhail</creatorcontrib><creatorcontrib>Bilalov, Dmitry</creatorcontrib><creatorcontrib>Oborin, Vladimir</creatorcontrib><creatorcontrib>Naimark, Oleg</creatorcontrib><title>Damage evolution in the AMg6 alloy during high and very high cycle fatigue</title><title>Frattura ed integritá strutturale</title><description>Paper presents the “in situ” method for determining of irreversible fatigue damage accumulation, based on the analysis of nonlinear manifestations of the feedback signal in a closed system of an ultrasonic fatigue system. During very high cycle (gigacycle) fatigue, the anomalies of the elastic properties of the material are appear, which leads to a nonlinearity effect in the amplitude of oscillations. This effect increases with the initiation and growth of fatigue cracks. The technology was applied to samples of AMG-6 alloy with preliminary dynamic deformation at various levels of average stress to determine the moment of initiation and growth of the fatigue crack in very high cycle fatigue regime. This method is applicable for the early detection of fatigue cracks both on the surface and inside the material under cyclic loading in the ultrasonic mode. On the basis of wide-range defining relations for a deformable solid body with mesoscopic defects, a mathematical model has been proposed that can adequately describe behavior of the material during fatigue failure. The results of mathematical modeling are in good agreement with the experimental data</description><subject>Aluminum base alloys</subject><subject>Anomalies</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Cyclic loads</subject><subject>Damage accumulation</subject><subject>Deformation</subject><subject>Elastic properties</subject><subject>Fatigue</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Flaw detection</subject><subject>Formability</subject><subject>Fracture mechanics</subject><subject>High cycle fatigue</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear analysis</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Oscillations</subject><issn>1971-8993</issn><issn>1971-8993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkM1PwkAUxDdGExG9et7Ec-vbj263R4KAGIwH9LzZ7kcpKS1uW5L-95TgwdPMJJN5Lz-EngnEjFLyul4to8V2vY15FjN5gyYkS0kks4zd_vP36KFt9wCCAvAJ-njTB1047E5N1XdlU-Oyxt3O4dlnIbCuqmbAtg9lXeBdWeywri0-uTBckxlM5bDXXVn07hHdeV217ulPp-hnufiev0ebr9V6PttEhhAKEXWpBQJcJsC8TSgXlkibGjCWGp0Knucp0VTk4JmwmaS5sJzq8X_hfeIpm6KX6-4xNL-9azu1b_pQjycVpRJ4CoLD2IqvLROatg3Oq2MoDzoMioC68FIjL3XhpXimmGRn_DJcjA</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Bannikov, Mikhail</creator><creator>Bilalov, Dmitry</creator><creator>Oborin, Vladimir</creator><creator>Naimark, Oleg</creator><general>Gruppo Italiano Frattura</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20190701</creationdate><title>Damage evolution in the AMg6 alloy during high and very high cycle fatigue</title><author>Bannikov, Mikhail ; Bilalov, Dmitry ; Oborin, Vladimir ; Naimark, Oleg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1120-2e7d01048503fd5246d18d7c0cd2ca764bb71a26b0f36d982b6d42a9716ff5f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; ita</language><creationdate>2019</creationdate><topic>Aluminum base alloys</topic><topic>Anomalies</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Cyclic loads</topic><topic>Damage accumulation</topic><topic>Deformation</topic><topic>Elastic properties</topic><topic>Fatigue</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Flaw detection</topic><topic>Formability</topic><topic>Fracture mechanics</topic><topic>High cycle fatigue</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear analysis</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Oscillations</topic><toplevel>online_resources</toplevel><creatorcontrib>Bannikov, Mikhail</creatorcontrib><creatorcontrib>Bilalov, Dmitry</creatorcontrib><creatorcontrib>Oborin, Vladimir</creatorcontrib><creatorcontrib>Naimark, Oleg</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Frattura ed integritá strutturale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bannikov, Mikhail</au><au>Bilalov, Dmitry</au><au>Oborin, Vladimir</au><au>Naimark, Oleg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Damage evolution in the AMg6 alloy during high and very high cycle fatigue</atitle><jtitle>Frattura ed integritá strutturale</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>13</volume><issue>49</issue><spage>383</spage><epage>395</epage><pages>383-395</pages><issn>1971-8993</issn><eissn>1971-8993</eissn><abstract>Paper presents the “in situ” method for determining of irreversible fatigue damage accumulation, based on the analysis of nonlinear manifestations of the feedback signal in a closed system of an ultrasonic fatigue system. During very high cycle (gigacycle) fatigue, the anomalies of the elastic properties of the material are appear, which leads to a nonlinearity effect in the amplitude of oscillations. This effect increases with the initiation and growth of fatigue cracks. The technology was applied to samples of AMG-6 alloy with preliminary dynamic deformation at various levels of average stress to determine the moment of initiation and growth of the fatigue crack in very high cycle fatigue regime. This method is applicable for the early detection of fatigue cracks both on the surface and inside the material under cyclic loading in the ultrasonic mode. On the basis of wide-range defining relations for a deformable solid body with mesoscopic defects, a mathematical model has been proposed that can adequately describe behavior of the material during fatigue failure. The results of mathematical modeling are in good agreement with the experimental data</abstract><cop>Cassino</cop><pub>Gruppo Italiano Frattura</pub><doi>10.3221/IGF-ESIS.49.38</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1971-8993 |
ispartof | Frattura ed integritá strutturale, 2019-07, Vol.13 (49), p.383-395 |
issn | 1971-8993 1971-8993 |
language | eng ; ita |
recordid | cdi_proquest_journals_2280470640 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Aluminum base alloys Anomalies Crack initiation Crack propagation Cyclic loads Damage accumulation Deformation Elastic properties Fatigue Fatigue cracks Fatigue failure Flaw detection Formability Fracture mechanics High cycle fatigue Mathematical analysis Mathematical models Nonlinear analysis Nonlinear systems Nonlinearity Oscillations |
title | Damage evolution in the AMg6 alloy during high and very high cycle fatigue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Damage%20evolution%20in%20the%20AMg6%20alloy%20during%20high%20and%20very%20high%20cycle%20fatigue&rft.jtitle=Frattura%20ed%20integrit%C3%A1%20strutturale&rft.au=Bannikov,%20Mikhail&rft.date=2019-07-01&rft.volume=13&rft.issue=49&rft.spage=383&rft.epage=395&rft.pages=383-395&rft.issn=1971-8993&rft.eissn=1971-8993&rft_id=info:doi/10.3221/IGF-ESIS.49.38&rft_dat=%3Cproquest_cross%3E2280470640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2280470640&rft_id=info:pmid/&rfr_iscdi=true |