Neural network-supported patient-adaptive fall prevention system

Patient falls due to unattended bed-exits are costly to patients, healthcare personnel and hospitals. Numerous researches based on up to three predetermined factors have been conducted for preventing falls. The present comprehensive proposal is based on four sub-systems that synthesize six factors....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2020-07, Vol.32 (13), p.9369-9382
Hauptverfasser: Özcanhan, Mehmet Hilal, Utku, Semih, Unluturk, Mehmet Suleyman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9382
container_issue 13
container_start_page 9369
container_title Neural computing & applications
container_volume 32
creator Özcanhan, Mehmet Hilal
Utku, Semih
Unluturk, Mehmet Suleyman
description Patient falls due to unattended bed-exits are costly to patients, healthcare personnel and hospitals. Numerous researches based on up to three predetermined factors have been conducted for preventing falls. The present comprehensive proposal is based on four sub-systems that synthesize six factors. A parameter is assigned to each factor with a coefficient specifically determined for each individual patient and per admittance. The parameters are aggregated in equations that lead to an early warning about a probable bed-exit, or an alarm about an imminent bed-exit. The ultimate aim of our proposal is the generation of the earliest possible warning to grant the longest time for nurse intervention. Thus, the probable fall of high-risk patients can be prevented, by stopping the unattended bed-exits. The proposal is supported by a prototype multi-tier system design and the results of laboratory patient bed-exit scenarios, carried out using the design. Comparison of the obtained results with previous work shows that our proposed solution is unmatched in providing the longest time for nurse intervention (up to 15.7 ± 1.1 s), because of the comprehensive six-factor synthesis, specific to each individual patient and each admittance.
doi_str_mv 10.1007/s00521-019-04451-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2280213488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2280213488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-996af3ab86305b2fce824a7a13b63523423fc5a4c1d974babda662ab25ab3a83</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouD6-gKeC52jeTW_K4gsWvew9TNpUuu62MUlX-u3NWsGbp4H5P2b4IXRFyQ0lpLyNhEhGMaEVJkJIiqcjtKCCc8yJ1MdoQSqRZSX4KTqLcUMIEUrLBbp7dWOAbdG79DWEDxxH74eQXFN4SJ3rE4YGfOr2rmhhuy18cPu87Ya-iFNMbneBTrIQ3eXvPEfrx4f18hmv3p5elvcrXPOSJVxVCloOVqv8kGVt7TQTUALlVnHJuGC8rSWImjZVKSzYBpRiYJkEy0Hzc3Q91_owfI4uJrMZxtDni4YxTRjlQh9cbHbVYYgxuNb40O0gTIYScwBlZlAmgzI_oMyUQ3wOxWzu3134q_4n9Q0OzGy7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2280213488</pqid></control><display><type>article</type><title>Neural network-supported patient-adaptive fall prevention system</title><source>Springer Nature - Complete Springer Journals</source><creator>Özcanhan, Mehmet Hilal ; Utku, Semih ; Unluturk, Mehmet Suleyman</creator><creatorcontrib>Özcanhan, Mehmet Hilal ; Utku, Semih ; Unluturk, Mehmet Suleyman</creatorcontrib><description>Patient falls due to unattended bed-exits are costly to patients, healthcare personnel and hospitals. Numerous researches based on up to three predetermined factors have been conducted for preventing falls. The present comprehensive proposal is based on four sub-systems that synthesize six factors. A parameter is assigned to each factor with a coefficient specifically determined for each individual patient and per admittance. The parameters are aggregated in equations that lead to an early warning about a probable bed-exit, or an alarm about an imminent bed-exit. The ultimate aim of our proposal is the generation of the earliest possible warning to grant the longest time for nurse intervention. Thus, the probable fall of high-risk patients can be prevented, by stopping the unattended bed-exits. The proposal is supported by a prototype multi-tier system design and the results of laboratory patient bed-exit scenarios, carried out using the design. Comparison of the obtained results with previous work shows that our proposed solution is unmatched in providing the longest time for nurse intervention (up to 15.7 ± 1.1 s), because of the comprehensive six-factor synthesis, specific to each individual patient and each admittance.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-019-04451-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adaptive systems ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Electrical impedance ; Image Processing and Computer Vision ; Neural networks ; Original Article ; Parameters ; Patients ; Probability and Statistics in Computer Science ; Systems design</subject><ispartof>Neural computing &amp; applications, 2020-07, Vol.32 (13), p.9369-9382</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-996af3ab86305b2fce824a7a13b63523423fc5a4c1d974babda662ab25ab3a83</citedby><cites>FETCH-LOGICAL-c372t-996af3ab86305b2fce824a7a13b63523423fc5a4c1d974babda662ab25ab3a83</cites><orcidid>0000-0002-8786-560X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-019-04451-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-019-04451-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Özcanhan, Mehmet Hilal</creatorcontrib><creatorcontrib>Utku, Semih</creatorcontrib><creatorcontrib>Unluturk, Mehmet Suleyman</creatorcontrib><title>Neural network-supported patient-adaptive fall prevention system</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Patient falls due to unattended bed-exits are costly to patients, healthcare personnel and hospitals. Numerous researches based on up to three predetermined factors have been conducted for preventing falls. The present comprehensive proposal is based on four sub-systems that synthesize six factors. A parameter is assigned to each factor with a coefficient specifically determined for each individual patient and per admittance. The parameters are aggregated in equations that lead to an early warning about a probable bed-exit, or an alarm about an imminent bed-exit. The ultimate aim of our proposal is the generation of the earliest possible warning to grant the longest time for nurse intervention. Thus, the probable fall of high-risk patients can be prevented, by stopping the unattended bed-exits. The proposal is supported by a prototype multi-tier system design and the results of laboratory patient bed-exit scenarios, carried out using the design. Comparison of the obtained results with previous work shows that our proposed solution is unmatched in providing the longest time for nurse intervention (up to 15.7 ± 1.1 s), because of the comprehensive six-factor synthesis, specific to each individual patient and each admittance.</description><subject>Adaptive systems</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Electrical impedance</subject><subject>Image Processing and Computer Vision</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Patients</subject><subject>Probability and Statistics in Computer Science</subject><subject>Systems design</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLxDAQx4MouD6-gKeC52jeTW_K4gsWvew9TNpUuu62MUlX-u3NWsGbp4H5P2b4IXRFyQ0lpLyNhEhGMaEVJkJIiqcjtKCCc8yJ1MdoQSqRZSX4KTqLcUMIEUrLBbp7dWOAbdG79DWEDxxH74eQXFN4SJ3rE4YGfOr2rmhhuy18cPu87Ya-iFNMbneBTrIQ3eXvPEfrx4f18hmv3p5elvcrXPOSJVxVCloOVqv8kGVt7TQTUALlVnHJuGC8rSWImjZVKSzYBpRiYJkEy0Hzc3Q91_owfI4uJrMZxtDni4YxTRjlQh9cbHbVYYgxuNb40O0gTIYScwBlZlAmgzI_oMyUQ3wOxWzu3134q_4n9Q0OzGy7</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Özcanhan, Mehmet Hilal</creator><creator>Utku, Semih</creator><creator>Unluturk, Mehmet Suleyman</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8786-560X</orcidid></search><sort><creationdate>20200701</creationdate><title>Neural network-supported patient-adaptive fall prevention system</title><author>Özcanhan, Mehmet Hilal ; Utku, Semih ; Unluturk, Mehmet Suleyman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-996af3ab86305b2fce824a7a13b63523423fc5a4c1d974babda662ab25ab3a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive systems</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Electrical impedance</topic><topic>Image Processing and Computer Vision</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Patients</topic><topic>Probability and Statistics in Computer Science</topic><topic>Systems design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Özcanhan, Mehmet Hilal</creatorcontrib><creatorcontrib>Utku, Semih</creatorcontrib><creatorcontrib>Unluturk, Mehmet Suleyman</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Özcanhan, Mehmet Hilal</au><au>Utku, Semih</au><au>Unluturk, Mehmet Suleyman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network-supported patient-adaptive fall prevention system</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>32</volume><issue>13</issue><spage>9369</spage><epage>9382</epage><pages>9369-9382</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Patient falls due to unattended bed-exits are costly to patients, healthcare personnel and hospitals. Numerous researches based on up to three predetermined factors have been conducted for preventing falls. The present comprehensive proposal is based on four sub-systems that synthesize six factors. A parameter is assigned to each factor with a coefficient specifically determined for each individual patient and per admittance. The parameters are aggregated in equations that lead to an early warning about a probable bed-exit, or an alarm about an imminent bed-exit. The ultimate aim of our proposal is the generation of the earliest possible warning to grant the longest time for nurse intervention. Thus, the probable fall of high-risk patients can be prevented, by stopping the unattended bed-exits. The proposal is supported by a prototype multi-tier system design and the results of laboratory patient bed-exit scenarios, carried out using the design. Comparison of the obtained results with previous work shows that our proposed solution is unmatched in providing the longest time for nurse intervention (up to 15.7 ± 1.1 s), because of the comprehensive six-factor synthesis, specific to each individual patient and each admittance.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-019-04451-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8786-560X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2020-07, Vol.32 (13), p.9369-9382
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2280213488
source Springer Nature - Complete Springer Journals
subjects Adaptive systems
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Electrical impedance
Image Processing and Computer Vision
Neural networks
Original Article
Parameters
Patients
Probability and Statistics in Computer Science
Systems design
title Neural network-supported patient-adaptive fall prevention system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network-supported%20patient-adaptive%20fall%20prevention%20system&rft.jtitle=Neural%20computing%20&%20applications&rft.au=%C3%96zcanhan,%20Mehmet%20Hilal&rft.date=2020-07-01&rft.volume=32&rft.issue=13&rft.spage=9369&rft.epage=9382&rft.pages=9369-9382&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-019-04451-y&rft_dat=%3Cproquest_cross%3E2280213488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2280213488&rft_id=info:pmid/&rfr_iscdi=true